%I #4 Mar 12 2014 16:36:51
%S 3,3,0,4,3,16,15,35,34,62,98,142,141,193,192,252,319,396,479,478,571,
%T 670,669,777,1017,1016,1148,1147,1288,1287,1754,1753,1925,2105,2292,
%U 2488,2692,2903,2902,3122,3349,3586,3828,4081,4080,4340,4883,5458,5457
%N square resultant of a complex prime genus function based on modulo 12 genus and modulo six genus functions.
%F g[1] = 1; g[2] = 1; g[n_] := (Prime[n] - 13)/12 /; Mod[Prime[n], 12] - 1 == 0 g[n_] := (Prime[n] - 5)/12 /; Mod[Prime[n], 12] - 5 == 0 g[n_] := (Prime[n] - 7)/12 /; Mod[Prime[n], 12] - 7 == 0 g[n_] := (Prime[n] + 1)/12 /; Mod[Prime[n], 12] - 11 == 0 h[1] = 1; h[2] = 1; h[n_] := (Prime[n])/6 /; Mod[Prime[n], 6] == 0 h[n_] := (Prime[n] - 1)/6 /; Mod[Prime[n], 6] - 1 == 0 h[n_] := (Prime[n] - 2)/6 /; Mod[Prime[n], 6] - 2 == 0 h[n_] := (Prime[n] - 3)/6 /; Mod[Prime[n], 6] - 3 == 0 h[n_] := (Prime[n] - 4)/6 /; Mod[Prime[n], 6] - 4 == 0 h[n_] := (Prime[n] - 5)/6 /; Mod[Prime[n], 6] - 5 == 0 c[n_]=Sqrt[2]*(h[n]-Sqrt[g[n]-h[n]^2]/Sqrt[2]) cstar[n_]= Conjugate[c[n]] a(n) = c[n]*cstar[n]
%t g[1] = 1; g[2] = 1; g[n_] := (Prime[n] - 13)/12 /; Mod[Prime[n], 12] - 1 == 0 g[n_] := (Prime[n] - 5)/12 /; Mod[Prime[n], 12] - 5 == 0 g[n_] := (Prime[n] - 7)/12 /; Mod[Prime[n], 12] - 7 == 0 g[n_] := (Prime[n] + 1)/12 /; Mod[Prime[n], 12] - 11 == 0 h[1] = 1; h[2] = 1; h[n_] := (Prime[n])/6 /; Mod[Prime[n], 6] == 0 h[n_] := (Prime[n] - 1)/6 /; Mod[Prime[n], 6] - 1 == 0 h[n_] := (Prime[n] - 2)/6 /; Mod[Prime[n], 6] - 2 == 0 h[n_] := (Prime[n] - 3)/6 /; Mod[Prime[n], 6] - 3 == 0 h[n_] := (Prime[n] - 4)/6 /; Mod[Prime[n], 6] - 4 == 0 h[n_] := (Prime[n] - 5)/6 /; Mod[Prime[n], 6] - 5 == 0 c[n_]=Sqrt[2]*(h[n]-Sqrt[g[n]-h[n]^2]/Sqrt[2]) cstar[n_]= Conjugate[c[n]] a=Table[ExpandAll[c[n]*cstar[n]],{n,1,50}]
%K nonn,uned,obsc
%O 0,1
%A _Roger L. Bagula_, Mar 21 2006