|
|
A116543
|
|
Number of terms in greedy representation of n in terms of the Lucas numbers.
|
|
5
|
|
|
1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 1, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 1, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 2, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 1, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 2, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
I have been studying A007895 and similar sequences and created this sequence as an analog of A007895 for the Lucas sequence (A000032).
|
|
LINKS
|
Clark Kimberling, Table of n, a(n) for n = 1..10000
Ron Knott, Using the Fibonacci numbers to represent whole numbers.
|
|
FORMULA
|
Let L(N)=max(Lucas numbers < N). Then a(0)=0 a(N)=1+a(N-L(N)).
|
|
EXAMPLE
|
a(12)=2 because 12=11+1.
|
|
MATHEMATICA
|
s = Reverse[Sort[Table[LucasL[n - 1], {n, 1, 22}]]];
t = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, s]][[2, 1]], # > 0 &]] &, Range[1000]] (* Peter J. C. Moses, Oct 18 2012 *)
|
|
CROSSREFS
|
Cf. A131343, A000032, A007895.
Sequence in context: A080757 A037196 A169818 * A256911 A107260 A279346
Adjacent sequences: A116540 A116541 A116542 * A116544 A116545 A116546
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
James E Davis, Mar 28 2006, Jun 07 2006
|
|
EXTENSIONS
|
Edited by N. J. A. Sloane, Aug 10 2007
|
|
STATUS
|
approved
|
|
|
|