login
A115596
The least number k > 1 such that (p+1)^k - p^k is prime, p = n-th prime.
1
2, 2, 2, 7, 2, 3, 3, 5, 2, 2, 5, 3, 2, 37, 58543, 2, 4663, 17, 3, 61, 23, 7, 2, 2, 7, 5, 7, 59, 5, 2, 59, 2, 196873
OFFSET
1,1
COMMENTS
Values k=1 is omitted as in this case p is Sophie Germain prime (2p+1 is also prime) A005384.
Each term is necessarily prime. Sophie Germain primes correspond to case k = 2. - Giuseppe Coppoletta, Oct 10 2018
EXAMPLE
a(1)=2 because (2+1)^2-2^2 = 5 is prime;
a(14)=37 because p(14)=43 and (43+1)^37-43^37 = 3679488080703419029992001830200360494989758810080014618823621 is prime.
MATHEMATICA
s={}; Do[n=Prime[i]; k=2; While[!PrimeQ[(n+1)^k-n^k], k++]; AppendTo[s, k], {i, 14}]; s (* Amiram Eldar, Oct 12 2018 *)
PROG
(PARI) a(n)=my(p=prime(n), k=1); while(!ispseudoprime((p+1)^k++-p^k), ); k \\ Charles R Greathouse IV, Oct 08 2013
CROSSREFS
Sequence in context: A125838 A021453 A053789 * A202033 A340742 A029610
KEYWORD
nonn,more
AUTHOR
Zak Seidov, Jan 25 2006
EXTENSIONS
Edited by Giuseppe Coppoletta, Oct 10 2018
a(15)-a(33) from Vaclav Kotesovec, Oct 11 2018
STATUS
approved