login
A115566
Numbers k such that 2^k, 2^(k+1) and 2^(k+2) have the same number of digits.
1
1, 4, 7, 10, 11, 14, 17, 20, 21, 24, 27, 30, 31, 34, 37, 40, 41, 44, 47, 50, 51, 54, 57, 60, 61, 64, 67, 70, 71, 74, 77, 80, 81, 84, 87, 90, 91, 94, 97, 100, 103, 104, 107, 110, 113, 114, 117, 120, 123, 124, 127, 130, 133, 134, 137, 140, 143, 144, 147, 150, 153, 154
OFFSET
1,2
COMMENTS
The density of this sequence is 1 - 2*log_10(2) = 0.3979400086720376...
LINKS
FORMULA
floor(log_10(2)*k) = floor(log_10(2)*(k+1)) = floor(log_10(2)*(k+2)).
EXAMPLE
2^4 = 16, 2^5 = 32, 2^6 = 64: all these numbers have two digits.
2^10 = 1024, 2^11 = 2048, 2^12 = 4096: all these numbers have three digits.
MAPLE
select(n -> ilog10(2^n)=ilog10(2^(n+2)), [$1..1000]); # Robert Israel, May 19 2019
MATHEMATICA
Select[Range[220], Floor[Log[10, 2]*# ] == Floor[Log[10, 2]*(# + 2)] &]
PROG
(Magma) [k:k in [1..160]|#Intseq(2^k) eq #Intseq(2^(k+2))]; // Marius A. Burtea, May 20 2019
CROSSREFS
Cf. A001682 (same definition with 3 instead of 2).
Cf. A034887 (number of digits in 2^n).
Sequence in context: A223024 A275340 A082206 * A364840 A190507 A087298
KEYWORD
nonn,base
AUTHOR
STATUS
approved