login
Decimal expansion of (Glaisher^12/(2*Pi*e^EulerGamma))^(Pi^2/6).
3

%I #31 Jun 22 2023 07:38:35

%S 2,5,5,3,7,1,2,6,8,2,7,4,8,2,0,9,0,5,2,9,3,9,3,1,4,5,7,4,4,4,0,9,6,4,

%T 0,7,8,6,6,7,1,5,1,0,3,8,2,1,4,8,1,7,1,2,8,1,3,5,3,6,0,1,3,4,5,9,6,6,

%U 9,8,2,5,8,4,5,6,9,0,6,2,7,7,1,0,6,1,1,7,3,7,6,5,3,5,4,4,3,6,7,5,3,4,5,3,8

%N Decimal expansion of (Glaisher^12/(2*Pi*e^EulerGamma))^(Pi^2/6).

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 135.

%H Robert A. Van Gorder, <a href="https://doi.org/10.1142/S1793042112500297">Glaisher-type products over the primes</a>, International Journal of Number Theory, Vol. 8, No. 2 (2012), pp. 543-550.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Glaisher-KinkelinConstant.html">Glaisher-Kinkelin Constant</a>.

%F Equals Product_{k>=1} k^(1/k^2). - _Vaclav Kotesovec_, Dec 10 2017

%F Equals (Product_{k>=1} prime(k)^(1/(prime(k)^2-1)))^(Pi^2/6) (Van Gorder, 2012). - _Amiram Eldar_, Jul 22 2022

%F Equals exp(-zeta'(2)). - _Vaclav Kotesovec_, Jun 22 2023

%e 2.5537126827482090529...

%t RealDigits[(Glaisher^12/(2Pi E^EulerGamma))^(Pi^2/6),10,100][[1]] (* _Vaclav Kotesovec_, Aug 15 2015 after _Eric W. Weisstein_ *)

%Y Cf. A000796, A001113, A001620, A073002, A074962.

%K nonn,cons

%O 0,1

%A _Eric W. Weisstein_, Jan 25 2006