login
Expansion of (x - 1)/(1 - x^2 + x^3 + x^4 - x^5).
0

%I #13 Jul 28 2022 03:38:25

%S -1,1,-1,2,-1,1,-1,-1,1,-2,4,-3,4,-4,1,-1,-2,6,-6,10,-11,8,-9,3,4,-7,

%T 18,-23,24,-30,22,-13,5,19,-34,49,-71,69,-67,57,-16,-16,63,-124,152,

%U -187,197,-152,108,-10,-124,231,-374,473,-491,492,-359,136,113,-488,828,-1096,1339,-1323,1119,-738,7,805,-1697,2655

%N Expansion of (x - 1)/(1 - x^2 + x^3 + x^4 - x^5).

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,-1,-1,1).

%F G.f.: (x - 1)/(1 - x^2 + x^3 + x^4 - x^5).

%F a(n) = a(n-2) - a(n-3) - a(n-4) + a(n-5). - _Wesley Ivan Hurt_, Jul 28 2022

%t CoefficientList[Series[(x - 1)/(1 - x^2 + x^3 + x^4 - x^5), {x, 0, 60}], x] (* _Wesley Ivan Hurt_, Jul 28 2022 *)

%K sign,easy

%O 0,4

%A _Roger L. Bagula_, Mar 08 2006

%E Edited by _N. J. A. Sloane_, Mar 08 2006