OFFSET
0,4
COMMENTS
a(n) is the greatest multiple of L^3*phi^(3*n-2), L^3*phi^(3*n-1), and L^3*(phi^(3*n-2) + phi^(3*n-1)), where L = (1+sqrt(5))/(2*sqrt(5)) and phi = (1+sqrt(5))/2. - G. C. Greubel, May 15 2019
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
Empirical g.f.: x^2*(x^8-2*x^6+x^5+2*x^4-x^3-x^2+1) / ((x-1)*(x+1)*(x^2+x-1)*(x^4-x^3+x^2-x+1)*(x^8-x^6+x^4-x^2+1)). - Colin Barker, Mar 15 2013
MATHEMATICA
L:= GoldenRatio/Sqrt[5]; Phi:= GoldenRatio;
f[n_]:= Floor[L^3*{Phi^(3*n-2), Phi^(3*n-1), Phi^(3*n-2) +Phi^(3*n-1)}];
Flatten[Table[f[n], {n, 1, 25}]]
CROSSREFS
KEYWORD
nonn,less
AUTHOR
Roger L. Bagula, Mar 06 2006
EXTENSIONS
Edited by G. C. Greubel, May 15 2019
STATUS
approved