This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114457 Smallest k > 0 such that abs(S(k)P(k)-k) equals n, where S(k) is the sum and P(k) is the product of decimal digits of k or 0 if no such k exists. 1
 1, 13, 2, 219, 724, 1285, 3, 23, 7789816, 11, 10, 2891, 4, 127, 226, 15, 3248, 163, 52, 31, 5, 33, 262, 12857, 24, 325, 16, 243, 38428, 617, 6, 68177, 172, 0, 62, 2275, 272, 22577, 118, 17, 40, 43, 7, 1339, 136, 25, 154, 143, 128, 125599, 34, 5619, 352, 1483 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(33) > 2*10^9; then sequence continues 62, 2275, 272, 22577, 118, 17, 40, 43, 7, 1339, 136, 25, 154, 143, 128, 125599, 34, 5619, 352, 1483, 18, 145, 8, 15457, 173, 14963, 60, 1727, 517, 1197, 1787456, 235, 642, 53, 116, ... - Robert G. Wilson v, Dec 14 2005 a(33) > 2*10^16. - Floris M. Velleman, Dec 17 2014 a(33) = 0. Modification of David W. Wilson's proof for A038369 shows that if a(33) > 0, then a(33) has at most 84 digits. This allows an exhaustive search of numbers of the form 2^a*3^b*5^c*7^d which shows that no such number exists. Other values of n for which a(n) is currently unknown and may be equal to 0 (based on analysis of numbers with at most 20 digits) are: 69, 111, 127, 146, 168, 172, 233, 243, 249, 273, 279, 281, 316, 327, 372, 533, 557, 579, 587, 621, 623, 647, 649, 676, 683, 713, 721, 816, 819, 821, 827, 861, 872, 917, 926, 927, 928, 939, 983, 996, 999, ... - Chai Wah Wu, Nov 22 2015 a(69) = a(111) = 0. To compute a(111), numbers of at most 85 digits were checked.  - Chai Wah Wu, Dec 04 2015 LINKS Chai Wah Wu, Table of n, a(n) for n = 0..126 Eric Weisstein's World of Mathematics, Sum-Product Number MATHEMATICA f[n_] := Block[{k = 1}, While[id = IntegerDigits@k; Abs[(Plus @@ id)(Times @@ id) - k] != n, k++ ]; k]; Table[ f[n], {n, 0, 54}] (* Robert G. Wilson v, Dec 14 2005 *) PROG (C++) unsigned long long f(int n = 33) { for (unsigned long long i = 0;; i++) { unsigned long long copy = i, prod = 1, sum = 0; while (i) { sum += i%10; prod *= i%10; i/=10; } if (abs(sum * prod - i == n) { return i; } } } // Floris M. Velleman, Dec 17 2014 (PARI) f(k) = my(d=digits(k)); abs(sum(j=1, #d, d[j])*prod(j=1, #d, d[j]) - k); a(n) = {k = 1; while(f(k) != n, k++); k; } \\ Michel Marcus, Jan 02 2015 CROSSREFS Cf. A007953 (sum of digits), A007954 (product of digits), A038369. Sequence in context: A185808 A178548 A098222 * A010220 A104818 A280009 Adjacent sequences:  A114454 A114455 A114456 * A114458 A114459 A114460 KEYWORD nonn,base,more AUTHOR Eric W. Weisstein, Nov 28 2005 EXTENSIONS Added a(33), edited definition and verified a(34)-a(68) by Chai Wah Wu, Nov 22 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 14:22 EDT 2018. Contains 316381 sequences. (Running on oeis4.)