login
Generalized Mancala solitaire (A002491); to get n-th term, start with n and successively round up to next 10 multiples of n-1, n-2, ..., 1, for n>=1.
11

%I #12 Sep 30 2022 08:55:41

%S 1,11,31,61,99,147,207,271,349,439,529,643,751,867,1009,1143,1309,

%T 1471,1651,1807,2019,2223,2439,2629,2851,3109,3363,3619,3879,4179,

%U 4429,4759,5067,5329,5667,6013,6387,6723,7069,7407,7839,8283,8593,9039,9423,9889

%N Generalized Mancala solitaire (A002491); to get n-th term, start with n and successively round up to next 10 multiples of n-1, n-2, ..., 1, for n>=1.

%H <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a>

%t f[n_] := Fold[ #2*Ceiling[ #1/#2 + 9] &, n, Reverse@Range[n - 1]]; Array[f, 46]

%Y Cf. {k=-1..12} A000012, A002491, A000960 (Flavius Josephus's sieve), A112557, A112558, A113742, A113743, A113744, A113745, A113746, A113748, A113749.

%K nonn

%O 1,2

%A _Paul D. Hanna_ and _Robert G. Wilson v_, Nov 05 2005