login
Generalized Mancala solitaire (A002491); to get n-th term, start with n and successively round up to next 8 multiples of n-1, n-2, ..., 1, for n>=1.
11

%I #12 Sep 30 2022 09:53:54

%S 1,9,25,49,79,121,163,219,279,349,423,507,589,687,807,927,1027,1171,

%T 1309,1453,1579,1743,1909,2101,2263,2479,2703,2851,3073,3279,3499,

%U 3807,3973,4239,4543,4767,5067,5293,5563,5893,6159,6547,6799,7189,7419,7839

%N Generalized Mancala solitaire (A002491); to get n-th term, start with n and successively round up to next 8 multiples of n-1, n-2, ..., 1, for n>=1.

%H <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a>

%t f[n_] := Fold[ #2*Ceiling[ #1/#2 + 7] &, n, Reverse@Range[n - 1]]; Array[f, 46]

%Y Cf. {k=-1..12} A000012, A002491, A000960 (Flavius Josephus's sieve), A112557, A112558, A113742, A113743, A113744, A113746, A113747, A113748, A113749.

%K nonn

%O 1,2

%A _Paul D. Hanna_ and _Robert G. Wilson v_, Nov 05 2005