login
A113650
Fibonacci(p-J(p,5)) mod p^2, where p is the n-th prime and J is the Jacobi symbol.
10
2, 3, 5, 21, 55, 39, 272, 57, 345, 754, 775, 481, 1599, 1677, 752, 1484, 590, 2928, 469, 3905, 4234, 3871, 1743, 445, 3589, 9797, 2266, 2568, 2834, 6780, 1651, 8384, 7946, 16263, 17880, 9060, 6908, 26080, 7348, 22490, 31146, 23711, 17954, 5983
OFFSET
1,1
COMMENTS
A value of 0 indicates a Wall-Sun-Sun prime. No such prime is currently known. - Felix Fröhlich, Jun 07 2014
LINKS
Eric Weisstein's World of Mathematics, Wall-Sun-Sun Prime
MATHEMATICA
a[n_]:= ( p=Prime[n]; Mod[Fibonacci[p-JacobiSymbol[p, 5]], Power[p, 2]]); Table[a[n], {n, 1, 50}] (* Javier Rivera Romeu, Mar 03 2022 *)
PROG
(PARI) a(n)=my(p=prime(n)); lift(Mod([1, 1; 1, 0]^(p-kronecker(p, 5)), p^2)[1, 2]) \\ Charles R Greathouse IV, Oct 31 2011
(Sage)
def a(n):
p = Primes().unrank(n-1)
return fibonacci(p-jacobi_symbol(p, 5))%pow(p, 2)
for n in range(1, 100): print(a(n), end=", ") # Javier Rivera Romeu, Mar 04 2022
CROSSREFS
Cf. A113649.
Sequence in context: A065398 A084838 A051694 * A259376 A060321 A351989
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Nov 03 2005
STATUS
approved