login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113423 Expansion of q^(-1)eta(q^2)*eta(q^8)^2*eta(q^10)/eta(q^4) in powers of q^2. 1
1, -1, 0, -1, -1, 0, 2, 1, 0, 2, -2, 1, -1, 2, -2, -2, -2, -1, 0, 2, 2, -3, 0, 1, 1, 2, 2, 0, 2, -2, 0, 1, 0, -3, 2, -2, 0, 1, -2, -4, -1, 1, 2, -4, 0, 2, 0, 0, 0, 0, 2, 3, 0, 3, 0, 2, -2, -1, -2, 2, -1, 0, 0, 7, 2, 0, -6, -2, -2, -2, -2, -2, 0, -3, 0, 2, 0, 0, 4, -2, -2, 5, -2, -1, 1, -2, 0, 1, 2, 2, -2, 0, 2, 2, 4, -2, 4, 0, 2, 0, -2, 2, 0, -3, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

K. Ono, Ramanujan, taxicabs, birthdates, ZIP codes and twists, Amer. Math. Monthly, 104 (1997), 912-917, MR1490909 (98i:11020).

FORMULA

Euler transform of period 20 sequence [ -1, 0, -1, -2, -2, 0, -1, -2, -1, -1, -1, -2, -1, 0, -2, -2, -1, 0, -1, -3, ...].

EXAMPLE

q -q^3 -q^7 -q^9 +2*q^13 +q^15 +2*q^19 -2*q^21 +q^23 +...

MATHEMATICA

a[n_] := SeriesCoefficient[QPochhammer[q^2]* QPochhammer[q^8]^2*

QPochhammer[q^10]/QPochhammer[q^4], {q, 0, n}]; Table[a[n], {n, 0, 100}][[;; ;; 2]] (* G. C. Greubel, Mar 10 2017 *)

PROG

(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)*eta(x^4+A)^2*eta(x^5+A)/eta(x^2+A), n))}

CROSSREFS

Sequence in context: A128306 A305152 A170983 * A131258 A298596 A029366

Adjacent sequences:  A113420 A113421 A113422 * A113424 A113425 A113426

KEYWORD

sign

AUTHOR

Michael Somos, Oct 31 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 04:44 EST 2019. Contains 329248 sequences. (Running on oeis4.)