login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113249 Corresponds to m = 3 in a family of 4th order linear recurrence sequences given by a(m,n) = m^4*a(n-4) + (2*m)^2*a(n-3) - 4*a(n-1), a(m,0) = -1, a(m,1) = 4, a(m,2) = -13 + 6*(m-1) + 3*(m-1)^2, a(m,3) = (-8+m^2)^2. 7
-1, 4, 11, 1, 59, 484, -1009, 6241, -2761, 13924, 87251, 57121, 49139, 4072324, -7165609, 35058241, 10350959, 30492484, 559712411, 973502401, -1957852501, 30450948004, -41421000289, 174055005601, 241428053159, 9658565284, 2872244917091, 11300885699041, -25300162140061 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Conjecture: a(m, 2*n+1) is a perfect square for all m, n. Disregarding signs and/or initial term, we have: m = 0 (A000302), m = 1 (A097948), m = 2 (A056450), m = 3 (a(n)), m = 4 (A113250), m = 5 (A113251), m = 6 (A113252), m = 7 (A113253), m = 8 (A113254), m = 9 (A113255), m = 10 (A113256)

In this case, a(2n+1) = b(n)^2 where b(n) = Re((2+sqrt(-5))^(n+1)) satisfies the recurrence b(n) = 4 b(n-1) - 9 b(n-2) with b(0)=2, b(1)=-1. - Robert Israel, Oct 23 2017

REFERENCES

C. Dement, Floretion Integer Sequences (work in progress)

LINKS

Table of n, a(n) for n=0..28.

Robert Munafo, Sequences Related to Floretions

Index entries for linear recurrences with constant coefficients, signature (-4, 0, 36, 81).

FORMULA

G.f. (-1+27*x^2+81*x^3)/((-3*x+1)*(3*x+1)*(9*x^2+4*x+1)).

a(2k+1) = (2*A176333(k)-3*A190967(k))^2. - Robert Israel, Oct 23 2017

EXAMPLE

a(3, 13) = 93161710957356599364/((-2+I*sqrt(5))^14*(2+I*sqrt(5))^14) = 4072324 = (2)^2*(1009)^2

MAPLE

Floretion Algebra Multiplication Program, FAMP Code: tesseq[A(3)*B]; A(m) = + 'i - 'k + i' - k' - m'jj' - 'ij' - 'ji' - 'jk' - 'kj' B = + .5'kk' + .5'ij' + .5'ji' + .5e or a(n) = f(3, n) with (Maple): f := (m, n) -> -1/4*m^2*(-m^2/(2-sqrt(4-m^2)))^n/(2-sqrt(4-m^2))-1/4*m^2*(-m^2/(2+sqrt(4-m^2)))^n/(2+sqrt(4-m^2))+1/4*m*m^n-1/4*m*(-m)^n;

# Alternative:

f:= gfun:-rectoproc({a(n) = 81*a(n-4)+36*a(n-3)-4*a(n-1), a(0) = -1, a(1) = 4, a(2) = 11, a(3) = 1}, a(n), remember):

map(f, [$0..30]); # Robert Israel, Oct 23 2017

MATHEMATICA

LinearRecurrence[{-4, 0, 36, 81}, {-1, 4, 11, 1}, 29] (* Jean-Fran├žois Alcover, Sep 25 2017 *)

CROSSREFS

Cf. A000302, A097948, A056450, A113250, A113251, A113252, A113253, A113254, A113255, A113256.

Cf. A176333, A190967.

Sequence in context: A132150 A091389 A175668 * A087171 A282026 A066333

Adjacent sequences:  A113246 A113247 A113248 * A113250 A113251 A113252

KEYWORD

easy,sign

AUTHOR

Creighton Dement, Oct 20 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 13:53 EST 2017. Contains 295001 sequences.