The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112689 A modified Chebyshev transform of the Jacobsthal numbers. 5
 0, 1, 1, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 3, 4, 3, 3, 4, 4, 4, 4, 4, 5, 5, 4, 5, 6, 5, 5, 6, 6, 6, 6, 6, 7, 7, 6, 7, 8, 7, 7, 8, 8, 8, 8, 8, 9, 9, 8, 9, 10, 9, 9, 10, 10, 10, 10, 10, 11, 11, 10, 11, 12, 11, 11, 12, 12, 12, 12, 12, 13, 13, 12, 13, 14, 13, 13, 14, 14, 14, 14, 14, 15, 15, 14 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (1,-1,2,-1,1,-1) FORMULA G.f.: x/((1+x^2)*(1+x+x^2)*(1-x)^2). a(n) = sum{k=0..floor((n+2)/2), (-1)^(k+1)*C(n-k+2, k-1)*A001045(n-2k+2)}. a(n) = floor((n+4)/6+(1-(-1)^n)*(-1)^floor(n/2)/4). - Tani Akinari, Aug 13 2013 G.f.: x / (1 - x + x^2 - 2*x^3 + x^4 - x^5 + x^6). - Michael Somos, Dec 11 2013 a(-4 - n) = -a(n). a(2*n) = floor( (n+2) / 3). a(2*n + 1) = A051275(n). a(6*n) = a(6*n - 2) = a(6*n - 4) = n. a(6*n + 1) - 1 = a(6*n - 3) = a(6*n - 7) = 2 * floor(n/2). - Michael Somos, Dec 11 2013 0 = a(n) - a(n-1) + a(n-2) - 2*a(n-3) + a(n-4) - a(n-5) + a(n-6) for all n in Z. - Michael Somos, Dec 11 2013 Euler transform of length 4 sequence [ 1, -1, 1, 1]. - Michael Somos, Dec 17 2013 EXAMPLE G.f. = x + x^2 + x^4 + 2*x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + ... MATHEMATICA CoefficientList[Series[x / ((1 + x^2) (1 + x + x^2) (1 - x)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 14 2013 *) a[ n_] := If[n > 0, SeriesCoefficient[ x / (1 - x + x^2 - 2 x^3 + x^4 - x^5 + x^6), {x, 0, n}], SeriesCoefficient[ -x^5 / (1 - x + x^2 - 2 x^3 + x^4 - x^5 + x^6), {x, 0, -n}]] (* Michael Somos, Dec 17 2013 *) LinearRecurrence[{1, -1, 2, -1, 1, -1}, {0, 1, 1, 0, 1, 2}, 100] (* Harvey P. Dale, Apr 18 2022 *) PROG (Magma) I:=[0, 1, 1, 0, 1, 2]; [n le 6 select I[n] else Self(n-1)-Self(n-2)+2*Self(n-3)-Self(n-4)+Self(n-5)-Self(n-6): n in [1..100]]; // Vincenzo Librandi, Aug 14 2013 (PARI) a(n) = floor((n+4)/6+(1-(-1)^n)*(-1)^floor(n/2)/4); \\ Joerg Arndt, Aug 14 2013 (PARI) {a(n) = if( n>0, polcoeff( x / (1 - x + x^2 - 2*x^3 + x^4 - x^5 + x^6) + x * O(x^n), n), polcoeff( -x^5 / (1 - x + x^2 - 2*x^3 + x^4 - x^5 + x^6) + x * O(x^-n), -n))} /* Michael Somos, Dec 11 2013 */ CROSSREFS Cf. A051275. Sequence in context: A053261 A123584 A291983 * A298604 A190353 A331904 Adjacent sequences: A112686 A112687 A112688 * A112690 A112691 A112692 KEYWORD easy,nonn AUTHOR Paul Barry, Sep 15 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 06:50 EST 2022. Contains 358362 sequences. (Running on oeis4.)