This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112259 Let p = the golden mean = (1+sqrt(5))/2. A point in 3-space is identified by three numbers t = (a,b,c). f(t) is the product a*b*c. Let t = (-1/p,1,p): using the rules of 'triternion' multiplication, e.g., (1,2,3)*(1,2,3)= 1,2,3 + 6,2,4 + 6,9,3 = (13,13,10), then -f(t^n) gives the sequence. 3
 1, 5, 9, 605, 961, 16245, 284089, 29645, 15046641, 101025125, 73222249, 9908816445, 23755748641, 204034140245, 5031349566489, 1965713970605, 219320727489361, 1965265930868805, 374345220088009, 158335559155140125 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Numbers in the sequence are alternatively products of squares or five times a product of squares. If f(t) is the sum of a+b+c then a(n)=2^(n+1). - Robert G. Wilson v, May 16 2006. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Russell Walsmith, Triternions. FORMULA t = (-1/p, 1, p). f(t) is the product 1/p*1*p. For t1 = (a, b, c) and t2 = (x, y, z), t1 - t2 = a(x, y, z) + b(z, x, y) + c(y, z, x) = (ax+bz+cy, ay+bx+cz, az+by+cx). -f(t^n) = the sequence. G.f.: x*(1+8*x)/((1-8*x)*(1+11*x+64*x^2)). [Joerg Arndt, Aug 03 2013] EXAMPLE t = (-0.618...,1,1.618...); t^2 = (3.618...,1.381...,-1). Hence -f(t^2) = 5 MATHEMATICA s = {-1/GoldenRatio, 1, GoldenRatio}; trit[lst_] := Block[{a, b, c, d, e, f}, {a, b, c} = lst[[1]]; {d, e, f} = lst[[2]]; {{a, b, c}, FullSimplify[{a*d + b*f + c*e, a*e + b*d + c*f, a*f + b*e + c*d}]}]; f[n_] := FullSimplify[ -Times @@ Nest[trit, {s, s}, n][[2]]]; Table[ f[n], {n, 0, 20}] (* Robert G. Wilson v, May 16 2006 *) CoefficientList[Series[(1 + 8 x) / ((1 - 8 x) (1 + 11 x + 64 x^2)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 04 2013 *) CROSSREFS Cf. A112260, A112261. Sequence in context: A109076 A101683 A098135 * A258150 A099731 A091306 Adjacent sequences:  A112256 A112257 A112258 * A112260 A112261 A112262 KEYWORD nonn,easy AUTHOR Russell Walsmith, Aug 30 2005 EXTENSIONS More terms from Robert G. Wilson v, May 16 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 00:50 EDT 2018. Contains 316252 sequences. (Running on oeis4.)