login
Decimal expansion of (Pi!)! = gamma(gamma(Pi+1)+1).
1

%I #10 Aug 01 2015 06:03:43

%S 7,3,8,0,5,5,5,5,5,7,6,0,3,1,0,3,8,7,1,5,0,5,7,7,5,1,2,2,7,5,9,9,4,7,

%T 1,1,2,4,8,9,2,6,5,7,4,1,1,3,0,7,7,1,7,7,7,7,7,3,6,5,0,8,7,8,8,7,7,1,

%U 5,4,3,5,8,5,0,7,4,8,7,1,5,3,7,9,4,4,8,0,3,2,2,7,8,5,7,2,1,9,2,2,1,6,3,6,7

%N Decimal expansion of (Pi!)! = gamma(gamma(Pi+1)+1).

%C Continued fraction is [7380, 1, 1, 3, 1, 6028, 1, 2, 1, 1, 14, 1, 20, 5, 3, 1, 3, 1, 1, 1, 3, 1,...]. 9(Pi!)! = 66425.000018427934843551976104839524..., the continued fraction of which is [66425, 54265, 2, 3, 1, 2, 3, 1, 1, 1, 1, 2, 1, 3, 5, 2, 2, 8, 1, 4, 2, 1,...]. - _Gerald McGarvey_, Oct 23 2005

%e 7380.55555760310387150577512275994711248926574113077177777365087887...

%t RealDigits[(Pi!)!, 10, 111][[1]] (* _Robert G. Wilson v_, Oct 24 2005 *)

%o (PARI) \p 100

%o x=gamma(gamma(Pi+1)+1);y=x/10^ceil(log(x)/log(10)) for(n=1,100,z=y*10;w=floor(z);print1(w,",");y=z-w)

%Y Cf. A000796.

%K cons,nonn

%O 4,1

%A _Gerald McGarvey_, Oct 23 2005

%E More terms from _Gerald McGarvey_, Oct 23 2005