

A110393


Modified LookandSay sequence where 2 is the largest number that may be used.


1



1, 11, 21, 1211, 111221, 21112211, 1221112221, 11222111221211, 212212211122111221, 121122112221112221112211, 111221222122122111221221112221, 2111221122121122112221112211222111221211
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The ratio r(n) of the number of "1"s to the number of "2"s in the sequence converges to (4*phi^(3/2)+5*phi+sqrt(phi)+3) / (4*phi^(3/2)+5*phi+3*sqrt(phi)+3) = 0.890054... as n goes to infinity, where phi = (1+sqrt(5))/2 is the golden ratio. [From Nathaniel Johnston, Jan 13 2011]


LINKS

Table of n, a(n) for n=0..11.
N. Johnston, Further Variants of the "LookandSay" Sequence


CROSSREFS

Cf. A005150, A179999.
Sequence in context: A063850 A005150 A001388 * A202627 A257491 A169853
Adjacent sequences: A110390 A110391 A110392 * A110394 A110395 A110396


KEYWORD

base,easy,nice,nonn


AUTHOR

Levi Kryder (seelevrun(AT)hotmail.com), May 11 2006


STATUS

approved



