login
A110388
a(n) = F(n)*F(n+1) mod 9, where F(n) = n-th Fibonacci number.
0
1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7, 8, 0, 0, 1, 2, 6, 6, 4, 5, 3, 3, 7
OFFSET
1,2
EXAMPLE
a(5) = 5*8 mod 9 = 4.
MAPLE
with(combinat): a:=n->fibonacci(n)*fibonacci(n+1) mod 9: seq(a(n), n=1..130); # Emeric Deutsch, Jul 31 2005
CROSSREFS
Sequence in context: A319276 A141329 A320953 * A007507 A350031 A065486
KEYWORD
easy,nonn
AUTHOR
Amarnath Murthy, Jul 27 2005
EXTENSIONS
More terms from Emeric Deutsch, Jul 31 2005
STATUS
approved