

A110274


Expansion of (167*x+6*x^2+28*x^3+8*x^4) / ((x1)*(x^2+x+1)*(4*x^28*x+1)).


2



16, 135, 1010, 7528, 56183, 419346, 3130024, 23362807, 174382354, 1301607592, 9715331319, 72516220178, 541268436136, 4040082608375, 30155587122450, 225084366546088, 1680052583878903, 12540083204846866, 93600455303259304
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (8,4,1,8,4).


FORMULA

a(n) = 8*a(n1)  4*a(n2) + a(n3)  8*a(n4) + 4*a(n5) for n>4.  Colin Barker, May 12 2019
117*a(n) = 47*A049347(n) 67*A049347(n1) + 8*(209*A099156(n+1)+274*A099156(n)) +247.  R. J. Mathar, Sep 11 2019


MAPLE

seriestolist(series((167*x+6*x^2+28*x^3+8*x^4)/((x1)*(x^2+x+1)*(4*x^28*x+1)), x=0, 25)); or Floretion Algebra Multiplication Program, FAMP Code: bisection of 4tessigcyczapsumseq[A*B] with A =  'j + 'k  'ii'  'ij'  'ik' and B = + .5'i + .5'j  .5'k + .5i'  .5j' + .5k' + .5'ij' + .5'ik'  .5'ji'  .5'ki'; Sumtype is set to: sum[(Y[0], Y[1], Y[2]), mod(3)


PROG

(PARI) Vec((16 + 7*x  6*x^2  28*x^3  8*x^4) / ((1  x)*(1 + x + x^2)*(1  8*x + 4*x^2)) + O(x^20)) \\ Colin Barker, May 12 2019


CROSSREFS

Cf. A110275.
Sequence in context: A161477 A162327 A161876 * A067814 A219904 A253303
Adjacent sequences: A110271 A110272 A110273 * A110275 A110276 A110277


KEYWORD

easy,nonn


AUTHOR

Creighton Dement, Jul 18 2005


STATUS

approved



