login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110274 Expansion of (-16-7*x+6*x^2+28*x^3+8*x^4) / ((x-1)*(x^2+x+1)*(4*x^2-8*x+1)). 2
16, 135, 1010, 7528, 56183, 419346, 3130024, 23362807, 174382354, 1301607592, 9715331319, 72516220178, 541268436136, 4040082608375, 30155587122450, 225084366546088, 1680052583878903, 12540083204846866, 93600455303259304 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (8,-4,1,-8,4).

FORMULA

a(n) = 8*a(n-1) - 4*a(n-2) + a(n-3) - 8*a(n-4) + 4*a(n-5) for n>4. - Colin Barker, May 12 2019

117*a(n) = -47*A049347(n) -67*A049347(n-1) + 8*(209*A099156(n+1)+274*A099156(n)) +247. - R. J. Mathar, Sep 11 2019

MAPLE

seriestolist(series((-16-7*x+6*x^2+28*x^3+8*x^4)/((x-1)*(x^2+x+1)*(4*x^2-8*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: bisection of 4tessigcyczapsumseq[A*B] with A = - 'j + 'k - 'ii' - 'ij' - 'ik' and B = + .5'i + .5'j - .5'k + .5i' - .5j' + .5k' + .5'ij' + .5'ik' - .5'ji' - .5'ki'; Sumtype is set to: sum[(Y[0], Y[1], Y[2]), mod(3)

PROG

(PARI) Vec((16 + 7*x - 6*x^2 - 28*x^3 - 8*x^4) / ((1 - x)*(1 + x + x^2)*(1 - 8*x + 4*x^2)) + O(x^20)) \\ Colin Barker, May 12 2019

CROSSREFS

Cf. A110275.

Sequence in context: A161477 A162327 A161876 * A067814 A219904 A253303

Adjacent sequences:  A110271 A110272 A110273 * A110275 A110276 A110277

KEYWORD

easy,nonn,changed

AUTHOR

Creighton Dement, Jul 18 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 02:20 EDT 2019. Contains 327149 sequences. (Running on oeis4.)