login
A110169
Triangle read by rows: T(n,k) (0<=k<=n) is the number of Delannoy paths of length n that start with exactly k (1,1) steps.
1
1, 2, 1, 10, 2, 1, 50, 10, 2, 1, 258, 50, 10, 2, 1, 1362, 258, 50, 10, 2, 1, 7306, 1362, 258, 50, 10, 2, 1, 39650, 7306, 1362, 258, 50, 10, 2, 1, 217090, 39650, 7306, 1362, 258, 50, 10, 2, 1, 1196834, 217090, 39650, 7306, 1362, 258, 50, 10, 2, 1, 6634890, 1196834
OFFSET
0,2
COMMENTS
A Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps E=(1,0), N=(0,1) and D=(1,1).
Row sums are the central Delannoy numbers (A001850). Column 0 yields A110170 (first differences of the central Delannoy numbers). sum(k*T(n,k),k=0..n)=A089165(n-1) (n>=1; partial sums of the central Delannoy numbers).
LINKS
Robert A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, Volume 6, 2003, Article 03.1.5.
FORMULA
T(n, k) = A001850(n-k)-A001850(n-k-1) for k<n; T(n, n)=1.
T(n, k) = P_{n-k}(3)-P_{n-k-1}(3) for k<n; T(n, n)=1, where P_j is j-th Legendre polynomial.
G.f.: (1-z)/((1-t*z)*sqrt(1-6*z+z^2)).
EXAMPLE
T(3,2)=2 because we have DDNE and DDEN.
Triangle starts:
1;
2,1;
10,2,1;
50,10,2,1;
258,50,10,2,1;
MAPLE
with(orthopoly): S:=proc(n, k) if k<n then P(n-k, 3)-P(n-k-1, 3) elif k=n then 1 else 0 fi end: for n from 0 to 10 do seq(S(n, k), k=0..n) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jul 14 2005
EXTENSIONS
Keyword tabf changed to tabl by Michel Marcus, Apr 09 2013
STATUS
approved