login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110151 Expansion of x*(-1+3*x-5*x^2+4*x^3+2*x^4+2*x^6) / ((x-1)*(2*x^4-4*x^3+3*x^2-3*x+1)*(x^4-2*x^3+2*x^2+1)). 1
0, 1, 1, 1, 9, 16, 14, 52, 148, 251, 565, 1499, 3243, 7060, 16908, 38770, 86560, 199485, 459507, 1042743, 2381573, 5463922, 12473396, 28472588, 65151034, 148934761, 340205233, 777721477, 1777971169, 4063085580 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-8,17,-27,32,-32,23,-10,2).

FORMULA

a(n) = 4*a(n-1) - 8*a(n-2) + 17*a(n-3) - 27*a(n-4) + 32*a(n-5) - 32*a(n-6) + 23*a(n-7) - 10*a(n-8) + 2*a(n-9) for n>8. - Colin Barker, May 16 2019

PROG

Floretion Algebra Multiplication Program, FAMP Code: 4kbaseicycsumseq[ + 'i + .5'k + .5k' + .5'ik' + .5'kj'], sumtype: (Y[15], *, vesy)

(PARI) concat(0, Vec(x*(1 - 3*x + 5*x^2 - 4*x^3 - 2*x^4 - 2*x^6) / ((1 - x)*(1 + 2*x^2 - 2*x^3 + x^4)*(1 - 3*x + 3*x^2 - 4*x^3 + 2*x^4)) + O(x^40))) \\ Colin Barker, May 16 2019

CROSSREFS

Sequence in context: A048752 A293376 A169999 * A131746 A092095 A186851

Adjacent sequences:  A110148 A110149 A110150 * A110152 A110153 A110154

KEYWORD

nonn,easy

AUTHOR

Creighton Dement, Sep 05 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 06:11 EST 2020. Contains 338781 sequences. (Running on oeis4.)