login
A110151
Expansion of x*(-1+3*x-5*x^2+4*x^3+2*x^4+2*x^6) / ((x-1)*(2*x^4-4*x^3+3*x^2-3*x+1)*(x^4-2*x^3+2*x^2+1)).
1
0, 1, 1, 1, 9, 16, 14, 52, 148, 251, 565, 1499, 3243, 7060, 16908, 38770, 86560, 199485, 459507, 1042743, 2381573, 5463922, 12473396, 28472588, 65151034, 148934761, 340205233, 777721477, 1777971169, 4063085580
OFFSET
0,5
COMMENTS
Floretion Algebra Multiplication Program, FAMP Code: 4kbaseicycsumseq[ + 'i + .5'k + .5k' + .5'ik' + .5'kj'], sumtype: (Y[15], *, vesy)
LINKS
FORMULA
a(n) = 4*a(n-1) - 8*a(n-2) + 17*a(n-3) - 27*a(n-4) + 32*a(n-5) - 32*a(n-6) + 23*a(n-7) - 10*a(n-8) + 2*a(n-9) for n>8. - Colin Barker, May 16 2019
PROG
(PARI) concat(0, Vec(x*(1 - 3*x + 5*x^2 - 4*x^3 - 2*x^4 - 2*x^6) / ((1 - x)*(1 + 2*x^2 - 2*x^3 + x^4)*(1 - 3*x + 3*x^2 - 4*x^3 + 2*x^4)) + O(x^40))) \\ Colin Barker, May 16 2019
CROSSREFS
Sequence in context: A048752 A293376 A169999 * A131746 A092095 A186851
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Sep 05 2005
STATUS
approved