

A110044


a(0) = 11, a(1) = 23; for n > 1, a(n) = a(n1)  a(n2).


2



11, 23, 12, 11, 1, 10, 9, 1, 8, 7, 1, 6, 5, 1, 4, 3, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Since a(18)=a(19)=1, starting from here the sequence is periodic with period 3: 1,1,0,1,1,0,1,1,0,...  Emeric Deutsch, Jul 13 2005


LINKS

Table of n, a(n) for n=0..102.
Index entries for linear recurrences with constant coefficients, signature (0, 0, 1).


FORMULA

a(n) = 2/3 + 1/3*cos(2*Pi*n/3) + 1/3*3^(1/2)*sin(2*Pi*n/3) for n >= 19.  Richard Choulet, Dec 12 2008


MAPLE

a[0]:=11: a[1]:=23: for n from 2 to 120 do a[n]:=abs(a[n1]a[n2]) od: seq(a[n], n=0..120); # Emeric Deutsch, Jul 13 2005


MATHEMATICA

Join[{11, 23, 12, 11, 1, 10, 9, 1, 8, 7, 1, 6, 5, 1, 4, 3, 1, 2}, LinearRecurrence[{0, 0, 1}, {1, 1, 0}, 85]] (* Ray Chandler, Aug 25 2015 *)


CROSSREFS

Cf. A141571.
Sequence in context: A351849 A253684 A180481 * A032663 A352868 A119815
Adjacent sequences: A110041 A110042 A110043 * A110045 A110046 A110047


KEYWORD

nonn,easy


AUTHOR

Edwin F. Sampang, Jul 09 2005


EXTENSIONS

More terms from Emeric Deutsch, Jul 13 2005


STATUS

approved



