OFFSET
1,5
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,5,0,0,0,-10,0,0,0,10,0,0,0,-5,0,0,0,1).
FORMULA
a(n) = (2*n+3-(-1)^n+2*(-1)^((2*n-3-(-1)^n)/4))*(n^3+10*n^2+28*n+88+(n^3+10*n^2-4*n-72)*(-1)^n+(n^3+2*n^2-4*n+56)*(-1)^((2*n-3-(-1)^n)/4)-(n^3+2*n^2+28*n-40)*(-1)^((2*n-1+(-1)^n)/4))/2048. - Luce ETIENNE, Aug 15 2016
G.f.: x*(1+x+x^2+x^3-3*x^4+11*x^5-x^6+3*x^7+3*x^8+11*x^9-x^10-3*x^11-x^12+x^13+x^14-x^15) / ((1-x)^5*(1+x)^5*(1+x^2)^5). - Colin Barker, Aug 15 2016
MAPLE
map(t -> (t, t^4, t^3, t^2), [$1..100]); # Robert Israel, Aug 15 2016
MATHEMATICA
Flatten[Table[{n, n^4, n^2, n^3}, {n, 20}]] (* or *) Flatten[ With[ {c=Range[20]}, Thread[{c, c^4, c^2, c^3}]]] (* Harvey P. Dale, Mar 28 2012 *)
PROG
(PARI) Vec(x*(1+x+x^2+x^3-3*x^4+11*x^5-x^6+3*x^7+3*x^8+11*x^9-x^10-3*x^11-x^12+x^13+x^14-x^15)/((1-x)^5*(1+x)^5*(1+x^2)^5) + O(x^60)) \\ Colin Barker, Aug 15 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Sep 02 2005
STATUS
approved