The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109797 First of a pair of compatible numbers, where two numbers m and n are compatible if sigma(n)-2dn=sigma(m)-2dm=m+n, for some proper divisors dn and dm of m and n respectively. 2
 24, 30, 40, 42, 48, 60, 80, 80, 96, 102, 126, 140, 140, 156, 156, 156, 174, 180, 180, 198, 216, 224, 224, 264, 276, 280, 294, 294, 300, 320, 340, 372, 380, 384, 440, 440, 468, 500, 504, 510, 528, 560, 582, 608, 616, 642, 680, 684, 690, 690, 696, 702, 736, 750 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Compatible numbers were introduced by Sachs in analogy to amicable numbers, as admirable numbers are analogous to perfect numbers. Some terms have more than one counterpart (A109798), like 80 (two counterparts: 102 and 104) or 156 (3 counterparts: 210, 230 and 234). - Amiram Eldar, Oct 26 2019 LINKS Amiram Eldar, Table of n, a(n) for n = 1..1000 J. M. Sachs, Admirable Numbers and Compatible Pairs, The Arithmetic Teacher, Vol. 7, No. 6 (1960), pp. 293-295. T. Trotter, Admirable Numbers. [Warning: As of March 2018 this site appears to have been hacked. Proceed with great caution. The original content should be retrieved from the Wayback machine and added here. - N. J. A. Sloane, Mar 29 2018] EXAMPLE sigma(42)-2(1)=96-2=94 and sigma(52)-2(2)=98-4=94 and 42+52=94 so a(4)=42. MAPLE L:=remove(proc(z) isprime(z) end, [\$1..10000]): S:=proc(n) map(proc(z) sigma(n) -2*z end, divisors(n) minus {n}) end; CK:=map(proc(z) [z, S(z)] end, L): CL:=[]: for j from 1 to nops(CK)-1 do x:=CK[j, 1]; sx:=sigma(x); Sx:=CK[j, 2]; for k from j+1 to nops(CK) while CK[k, 1] 0 && EvenQ[delta] && delta/2 < m && Divisible[m, delta/2], AppendTo[seq, n]], {k, Length[d], 1, -1}], {n, 1, 750}]; seq (* Amiram Eldar, Oct 26 2019 *) CROSSREFS Cf. A109798, A111592. Sequence in context: A284174 A292982 A334972 * A129656 A334974 A048945 Adjacent sequences: A109794 A109795 A109796 * A109798 A109799 A109800 KEYWORD nonn AUTHOR Walter Kehowski, Aug 15 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 01:29 EST 2022. Contains 358711 sequences. (Running on oeis4.)