%I #26 Dec 20 2019 05:52:18
%S 1,2,3,3,2,3,5,-4,5,55,-212,201,2381,-15350,35183,145359,-1821438,
%T 8117231,-521487,-278996548,2261959961,-7554900397,-34727188796,
%U 690775844605,-4901767330647,10921820177234,179314430713387,-2668801066419061,18150518618843778
%N E.g.f.: exp(-exp(-x)+1+x).
%C Equals double binomial transform of A014182. - _Gary W. Adamson_, Dec 31 2008
%F a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n, k)*A000522(k).
%F G.f. = (1 - x^2 * Sum_{k>0} k * x^k / ((1 + x) * (1 + 2*x) + ... (1 + k*x))) / (1 - x)^2. - _Michael Somos_, Nov 07 2014
%F G.f.: 1/(1-x*Q(0)), where Q(k)= 1 + x/(1 - x - x*(k+1)/(x - 1/Q(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 19 2013
%F G.f.: 1/W(0), where W(k) = 1 - x - x/(1 + x*(k+1)/W(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Nov 07 2014
%F a(n) = exp(1) * (-1)^n * Sum_{k>=0} (-1)^k * (k - 1)^n / k!. - _Ilya Gutkovskiy_, Dec 20 2019
%e G.f. = 1 + 2*x + 3*x^2 + 3*x^3 + 2*x^4 + 3*x^5 + 5*x^6 - 4*x^7 + 5*x^8 + 55*x^9 + ...
%p G:=exp(-exp(-x)+1+x): Gser:=series(G,x=0,32): seq(n!*coeff(Gser,x,n),n=0..28); # _Emeric Deutsch_, Apr 10 2006
%t With[{nn=30},CoefficientList[Series[Exp[-Exp[-x]+1+x],{x,0,nn}],x] Range[ 0,nn]!] (* _Harvey P. Dale_, Jun 22 2018 *)
%Y Cf. A080094.
%Y Cf. A014182. - _Gary W. Adamson_, Dec 31 2008
%K easy,sign
%O 0,2
%A _Franklin T. Adams-Watters_ and _Vladeta Jovovic_, Aug 10 2005
%E More terms from _Emeric Deutsch_, Apr 10 2006