login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109620 a(n) = (1/3)*n^3 - n^2 - (1/3)*n - 1. 0
-1, -2, -3, -2, 3, 14, 33, 62, 103, 158, 229, 318, 427, 558, 713, 894, 1103, 1342, 1613, 1918, 2259, 2638, 3057, 3518, 4023, 4574, 5173, 5822, 6523, 7278, 8089, 8958, 9887, 10878, 11933, 13054, 14243, 15502, 16833, 18238, 19719, 21278, 22917, 24638, 26443, 28334, 30313, 32382, 34543, 36798 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

It is interesting that this sequence is generated using the same rules as those given for A108618 (version "jes"; the initial seed is the floretion given in program code, below). In reference to those rules, we have: **Loop 0** + .5'i + .5i' + .5'ik' + .5'ji' + e **Loop 1** + 1.5'i - .5'j + 1.5i' - .5k' + .5'ii' + 1.5'ik' + 1.5'ji' + .5'kj' + 3e **Loop 2** + 3.5'i - 2'j + 3.5i' - 2k' + 2'ii' + 3.5'ik' + 3.5'ji' + 2'kj' + 5e **Loop 3** + 6.5'i - 5.5'j + 6.5i' - 5.5k' + 5.5'ii' + 6.5'ik' + 6.5'ji' + 5.5'kj' + 7e **Loop 4** + 10.5'i - 12'j + 10.5i' - 12k' + 12'ii' + 10.5'ik' + 10.5'ji' + 12'kj' + 9e **Loop 5** + 15.5'i - 22.5'j + 15.5i' - 22.5k' + 22.5'ii' + 15.5'ik' + 15.5'ji' + 22.5'kj' + 11e **Loop 6** + 21.5'i - 38'j + 21.5i' - 38k' + 38'ii' + 21.5'ik' + 21.5'ji' + 38'kj' + 13e **Loop 7** + 28.5'i - 59.5'j + 28.5i' - 59.5k' + 59.5'ii' + 28.5'ik' + 28.5'ji' + 59.5'kj' + 15e **Loop 8** + 36.5'i - 88'j + 36.5i' - 88k' + 88'ii' + 36.5'ik' + 36.5'ji' + 88'kj' + 17e **Loop 9** + 45.5'i - 124.5'j + 45.5i' - 124.5k' + 124.5'ii' + 45.5'ik' + 45.5'ji' + 124.5'kj' + 19e. a(n) is calculated by adding the real number coefficients of 'i, 'j and 'k (which is always 0 here) from the n-th loop and multiplying the result by -2.

LINKS

Table of n, a(n) for n=0..49.

Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).

FORMULA

a(n) = A006527(n) - A002061(n+1), g.f. (2*x-1)*(x^2+1)/(x-1)^4

a(0)=-1, a(1)=-2, a(2)=-3, a(3)=-2, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)- a(n-4). - Harvey P. Dale, Jul 21 2013

MAPLE

seriestolist(series((2*x-1)*(x^2+1)/(x-1)^4, x=0, 50)); -or- Floretion Algebra Multiplication Program, FAMP Code: -2jessumseq[ + .5'i + .5i' + .5'ik' + .5'ji' + e], Sumtype: sum[Y[15]] = sum[ * ]. Note: 2ibasesumseq = A002061, apart from initial term, -2jbasesumseq = A006527.

MATHEMATICA

Table[n^3/3-n^2-n/3-1, {n, 0, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {-1, -2, -3, -2}, 60] (* Harvey P. Dale, Jul 21 2013 *)

CROSSREFS

Cf. A006527, A002061.

Sequence in context: A223168 A077942 A077989 * A138781 A224416 A282049

Adjacent sequences:  A109617 A109618 A109619 * A109621 A109622 A109623

KEYWORD

easy,sign

AUTHOR

Creighton Dement, Aug 01 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 14:15 EST 2017. Contains 294893 sequences.