OFFSET
1,3
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
T. Nagell, "Introduction to Number Theory", Chelsea Pub., New York, 1964, Chap. VIII.
LINKS
J. J. O'Connor and E. F. Robertson, Atle Selberg.
Atle Selberg, An elementary proof of the prime number theorem for arithmetic progressions, Canad. J. Math., 2, (1949), 66-78.
Atle Selberg, An elementary proof of Dirichlet's theorem about primes in an arithmetic progression, Annals Math., 50, (1949). 297-304.
Eric Weisstein's World of Mathematics, Selberg's Formula.
FORMULA
Selberg proved that S(x) = 2*x*log(x) + o(x*log(x)).
MATHEMATICA
lmbd[d_, x_] := MoebiusMu[d]*Log[x/d]^2; f[n_, x_] := Block[{d = Divisors[n]}, Plus @@ lmbd[d, x]]; s[x_] := Sum[f[n, x], {n, x}]; Table[ Floor[ s[n]], {n, 57}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post and Robert G. Wilson v, Jun 30 2005
STATUS
approved