

A109507


Let x be a positive number, Lambda(d) = Moebius(d)*[log(x/d)]^2, f(m) = Sum_{dm} Lambda(d), S(x) = Sum_{m <= x} f(m). Sequence gives nearest integer to S(n).


1



0, 1, 3, 7, 11, 15, 20, 25, 31, 35, 43, 46, 55, 60, 66, 71, 81, 85, 95, 100, 106, 112, 124, 127, 137, 143, 151, 156, 169, 171, 185, 192, 199, 205, 214, 217, 232, 238, 246, 250, 266, 268, 284, 290, 296, 302, 319, 323, 336, 340, 349, 354, 372, 376, 386, 390, 399
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


REFERENCES

T. M. Apostol, Introduction to Analytic Number Theory, SpringerVerlag, New York, 1976.
T. Nagell, "Introduction to Number Theory", Chelsea Pub., New York, 1964, Chap. VIII.


LINKS

Table of n, a(n) for n=1..57.
J. J. O'Connor and E. F. Robertson, Atle Selberg.
Atle Selberg, An elementary proof of the prime number theorem for arithmetic progressions, Canad. J. Math., 2, (1949), 6678.
Atle Selberg, An elementary proof of Dirichlet's theorem about primes in an arithmetic progression, Annals Math., 50, (1949). 297304.
Eric Weisstein's World of Mathematics, Selberg's Formula.


FORMULA

Selberg proved that S(x) = 2*x*log(x) + o(x*log(x)).


MATHEMATICA

lmbd[d_, x_] := MoebiusMu[d]*Log[x/d]^2; f[n_, x_] := Block[{d = Divisors[n]}, Plus @@ lmbd[d, x]]; s[x_] := Sum[f[n, x], {n, x}]; Table[ Floor[ s[n]], {n, 57}]


CROSSREFS

Cf. A109508.
Sequence in context: A310211 A310212 A310213 * A160802 A170888 A182838
Adjacent sequences: A109504 A109505 A109506 * A109508 A109509 A109510


KEYWORD

nonn


AUTHOR

Jonathan Vos Post and Robert G. Wilson v, Jun 30 2005


STATUS

approved



