login
A109415
a(n) equals the (n*(n+1)/2)-th partial sum of the self-convolution 4th power of A010054, which has the g.f.: Sum_{k>=0} x^(k*(k+1)/2).
2
1, 5, 19, 58, 152, 309, 585, 1046, 1666, 2601, 3871, 5508, 7680, 10423, 13835, 17984, 23168, 29225, 36431, 45000, 54780, 66299, 79637, 94546, 111612, 131215, 152683, 177008, 204264, 234375, 267795, 304678, 345240, 389213, 438235, 490842, 548542
OFFSET
0,2
FORMULA
a(n) = [x^(n*(n+1)/2)] [Sum_{k>=0} x^(k*(k+1)/2)]^4/(1-x).
PROG
(PARI) {a(n)=local(X=x+x*O(x^(n*(n+1)/2))); polcoeff((eta(X^2)^2/eta(X))^4/(1-X), n*(n+1)/2)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 27 2005
STATUS
approved