%I #13 Mar 04 2018 07:40:54
%S 1,1,1,1,1,2,1,3,2,1,4,5,1,5,9,5,1,6,14,14,1,7,20,28,14,1,8,27,48,42,
%T 1,9,35,75,90,42,1,10,44,110,165,132,1,11,54,154,275,297,132,1,12,65,
%U 208,429,572,429,1,13,77,273,637,1001,1001,429,1,14,90,350,910,1638,2002
%N Yet another version of the Catalan triangle A008315.
%D J. H. Conway and D. A. Smith, On Quaternions and Octonions, A K Peters, Ltd., Natick, MA, 2003. See p. 60. MR1957212 (2004a:17002)
%H R. K. Guy, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/GUY/catwalks.html">Catwalks, sandsteps and Pascal pyramids</a>, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
%H W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, <a href="http://www.fq.math.ca/Scanned/35-4/klostermeyer.pdf">A Pascal rhombus</a>, Fibonacci Quarterly, 35 (1997), 318-328.
%e .......|...1
%e .......|.......1
%e .......|...1.......1
%e .......|.......2.......1
%e .......|...2.......3.......1
%e .......|.......5.......4.......1
%e .......|...5.......9.......5.......1
%e .......|......14......14.......6.......1
%e .......|..14......28......20.......7.......1
%e .......|......42......48......27.......8.......1
%p A008315 := proc(n,k)
%p binomial(n,k)-binomial(n,k-1) ;
%p end:
%p for n from 0 to 30 do
%p for k from 0 to n/2 do
%p printf("%d, ",A008315(n,k)) ;
%p od:
%p od: # _R. J. Mathar_, Feb 13 2008
%Y See A008315 (the main entry for this triangle) for more information.
%Y Cf. A053121, A008313, A052173.
%K nonn,easy,tabf
%O 0,6
%A _N. J. A. Sloane_, Nov 09 2006