login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108561 Triangle read by rows: T(n,0)=1, T(n,n)=(-1)^n, T(n+1,k)=T(n,k-1)+T(n,k) for 0<k<n. 22

%I

%S 1,1,-1,1,0,1,1,1,1,-1,1,2,2,0,1,1,3,4,2,1,-1,1,4,7,6,3,0,1,1,5,11,13,

%T 9,3,1,-1,1,6,16,24,22,12,4,0,1,1,7,22,40,46,34,16,4,1,-1,1,8,29,62,

%U 86,80,50,20,5,0,1,1,9,37,91,148,166,130,70,25,5,1,-1,1,10,46,128,239,314,296,200,95,30,6,0,1,1,11,56,174,367

%N Triangle read by rows: T(n,0)=1, T(n,n)=(-1)^n, T(n+1,k)=T(n,k-1)+T(n,k) for 0<k<n.

%C Sum(T(n,k): 0<=k<=n) = A078008(n);

%C Sum(abs(T(n,k)): 0<=k<=n) = A052953(n-1) for n>0;

%C T(n,1) = n - 2 for n>1;

%C T(n,2) = A000124(n-3) for n>2;

%C T(n,3) = A003600(n-4) for n>4;

%C T(n,n-6) = A001753(n-6) for n>6;

%C T(n,n-5) = A001752(n-5) for n>5;

%C T(n,n-4) = A002623(n-4) for n>4;

%C T(n,n-3) = A002620(n-1) for n>3;

%C T(n,n-2) = A008619(n-2) for n>2;

%C T(n,n-1) = n mod 2 for n>0;

%C T(2*n,n) = A072547(n+1).

%C Sum_{k=0..n}T(n,k)*x^k = A232015(n), A078008(n), A000012(n), A040000(n), A001045(n+2), A140725(n+1) for x = 2, 1, 0, -1, -2, -3 respectively. - _Philippe Deléham_, Nov 17 2013, Nov 19 2013

%C (1,a^n)Pascal triangle with a = -1. - _Philippe Deléham_, Dec 27 2013

%C T(n,k) = A112465(n,n-k). - _Reinhard Zumkeller_, Jan 03 2014

%H Reinhard Zumkeller, <a href="/A108561/b108561.txt">Rows n = 0..125 of triangle, flattened</a>

%H <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>

%F G.f.: (1-y*x)/(1-x-(y+y^2)*x). - _Philippe Deléham_, Nov 17 2013

%F T(n,k)=T(n-1,k)+T(n-2,k-1)+T(n-2,k-2), T(0,0)=T(1,0)=1, T(1,1)=-1, T(n,k)=0 if k<0 or if k>n. - _Philippe Deléham_, Nov 17 2013

%e Triangle begins:

%e 1

%e 1, -1

%e 1, 0, 1

%e 1, 1, 1, -1

%e 1, 2, 2, 0, 1

%e 1, 3, 4, 2, 1, -1

%e 1, 4, 7, 6, 3, 0, 1 - _Philippe Deléham_, Nov 17 2013

%t Clear[t]; t[n_, 0] = 1; t[n_, n_] := t[n, n] = (-1)^Mod[n, 2]; t[n_, k_] := t[n, k] = t[n-1, k] + t[n-1, k-1]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Mar 06 2013 *)

%o (Haskell)

%o a108561 n k = a108561_tabl !! n !! k

%o a108561_row n = a108561_tabl !! n

%o a108561_tabl = map reverse a112465_tabl

%o -- _Reinhard Zumkeller_, Jan 03 2014

%o (Sage)

%o def A108561_row(n):

%o @cached_function

%o def prec(n, k):

%o if k==n: return 1

%o if k==0: return 0

%o return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))

%o return [(-1)^k*prec(n, k) for k in (1..n-1)]+[(-1)^(n+1)]

%o for n in (1..12): print A108561_row(n) # _Peter Luschny_, Mar 16 2016

%Y Cf. A007318 (a=1), A008949(a=2), A164844(a=10).

%Y Similar to the triangles A035317, A059259, A080242, A112555.

%Y Cf. A228196

%Y Cf. A072547 (central terms).

%K sign,tabl

%O 0,12

%A _Reinhard Zumkeller_, Jun 10 2005

%E Definition corrected by _Philippe Deléham_, Dec 26 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 12:56 EST 2016. Contains 278678 sequences.