login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108561 Triangle read by rows: T(n,0)=1, T(n,n)=(-1)^n, T(n+1,k)=T(n,k-1)+T(n,k) for 0<k<n. 22

%I

%S 1,1,-1,1,0,1,1,1,1,-1,1,2,2,0,1,1,3,4,2,1,-1,1,4,7,6,3,0,1,1,5,11,13,

%T 9,3,1,-1,1,6,16,24,22,12,4,0,1,1,7,22,40,46,34,16,4,1,-1,1,8,29,62,

%U 86,80,50,20,5,0,1,1,9,37,91,148,166,130,70,25,5,1,-1,1,10,46,128,239,314,296,200,95,30,6,0,1,1,11,56,174,367

%N Triangle read by rows: T(n,0)=1, T(n,n)=(-1)^n, T(n+1,k)=T(n,k-1)+T(n,k) for 0<k<n.

%C Sum(T(n,k): 0<=k<=n) = A078008(n);

%C Sum(abs(T(n,k)): 0<=k<=n) = A052953(n-1) for n>0;

%C T(n,1) = n - 2 for n>1;

%C T(n,2) = A000124(n-3) for n>2;

%C T(n,3) = A003600(n-4) for n>4;

%C T(n,n-6) = A001753(n-6) for n>6;

%C T(n,n-5) = A001752(n-5) for n>5;

%C T(n,n-4) = A002623(n-4) for n>4;

%C T(n,n-3) = A002620(n-1) for n>3;

%C T(n,n-2) = A008619(n-2) for n>2;

%C T(n,n-1) = n mod 2 for n>0;

%C T(2*n,n) = A072547(n+1).

%C Sum_{k=0..n}T(n,k)*x^k = A232015(n), A078008(n), A000012(n), A040000(n), A001045(n+2), A140725(n+1) for x = 2, 1, 0, -1, -2, -3 respectively. - _Philippe Deléham_, Nov 17 2013, Nov 19 2013

%C (1,a^n)Pascal triangle with a = -1. - _Philippe Deléham_, Dec 27 2013

%C T(n,k) = A112465(n,n-k). - _Reinhard Zumkeller_, Jan 03 2014

%H Reinhard Zumkeller, <a href="/A108561/b108561.txt">Rows n = 0..125 of triangle, flattened</a>

%H <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>

%F G.f.: (1-y*x)/(1-x-(y+y^2)*x). - _Philippe Deléham_, Nov 17 2013

%F T(n,k)=T(n-1,k)+T(n-2,k-1)+T(n-2,k-2), T(0,0)=T(1,0)=1, T(1,1)=-1, T(n,k)=0 if k<0 or if k>n. - _Philippe Deléham_, Nov 17 2013

%e Triangle begins:

%e 1

%e 1, -1

%e 1, 0, 1

%e 1, 1, 1, -1

%e 1, 2, 2, 0, 1

%e 1, 3, 4, 2, 1, -1

%e 1, 4, 7, 6, 3, 0, 1 - _Philippe Deléham_, Nov 17 2013

%t Clear[t]; t[n_, 0] = 1; t[n_, n_] := t[n, n] = (-1)^Mod[n, 2]; t[n_, k_] := t[n, k] = t[n-1, k] + t[n-1, k-1]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Mar 06 2013 *)

%o (Haskell)

%o a108561 n k = a108561_tabl !! n !! k

%o a108561_row n = a108561_tabl !! n

%o a108561_tabl = map reverse a112465_tabl

%o -- _Reinhard Zumkeller_, Jan 03 2014

%Y Cf. A007318 (a=1), A008949(a=2), A164844(a=10).

%Y Similar to the triangles A035317, A059259, A080242, A112555.

%Y Cf. A228196

%Y Cf. A072547 (central terms).

%K sign,tabl

%O 0,12

%A _Reinhard Zumkeller_, Jun 10 2005

%E Definition corrected by _Philippe Deléham_, Dec 26 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 29 03:21 EDT 2015. Contains 261184 sequences.