login
A107956
a(n) = (n+1)(n+2)^2*(n+3)^2*(n+4)(5n^2 + 21n + 20)/2880.
1
1, 23, 205, 1120, 4508, 14700, 41076, 101970, 230505, 482911, 949949, 1772134, 3159520, 5416880, 8975184, 14430348, 22590297, 34531455, 51665845, 75820052, 109327372, 155134540, 216924500, 299256750, 407726865, 549146871, 731748213
OFFSET
0,2
COMMENTS
Kekulé numbers for certain benzenoids.
LINKS
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 229).
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
From Colin Barker, Apr 22 2020: (Start)
G.f.: (1 + 14*x + 34*x^2 + 19*x^3 + 2*x^4) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>8.
(End)
MAPLE
a:=n->(1/2880)*(n+1)*(n+2)^2*(n+3)^2*(n+4)*(5*n^2+21*n+20): seq(a(n), n=0..30);
PROG
(PARI) Vec((1 + 14*x + 34*x^2 + 19*x^3 + 2*x^4) / (1 - x)^9 + O(x^30)) \\ Colin Barker, Apr 22 2020
CROSSREFS
Sequence in context: A367182 A221670 A128334 * A022683 A042020 A263521
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jun 12 2005
STATUS
approved