



30, 1309, 50209, 299423, 4329769, 4661471, 13968601, 19867823, 49402237, 90419171, 95575609, 230236057
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Golden 3almost primes.
Volumes of bricks (rectangular parallelopipeds) each of whose faces has golden semiprime area. How long a chain is possible of the form p(1) * p(2) * p(3) * ... * p(n) where each successive pair of values are factors of a golden semiprime? That is, if Zumkeller's golden semiprimes are the 2dimensional case and the present sequence is the 3dimensional case, is there a maximum n for an ndimensional case?


LINKS

Table of n, a(n) for n=1..12.


EXAMPLE

30 = 2 * 3 * 5, where both 2*3=6 and 3*5=15 are golden semiprimes.
1309 = 7 * 11 * 17.
50209 = 23 * 37 * 59.


CROSSREFS

Cf. A014612, A108540, A108541, A108542.
Sequence in context: A163521 A273416 A002456 * A048536 A318496 A000173
Adjacent sequences: A107765 A107766 A107767 * A107769 A107770 A107771


KEYWORD

easy,nonn


AUTHOR

Jonathan Vos Post, Jun 11 2005


STATUS

approved



