login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107700 G.f. A(x) satisfies: A(A(x)) = x + 2*A(x)^2. 4
1, 1, 1, 0, -2, 0, 13, 0, -145, 0, 2328, 0, -49784, 0, 1358965, 0, -46076544, 0, 1902202515, 0, -94104681660, 0, 5503867176832, 0, -376096374571125, 0, 29714871818774044, 0, -2689473418781240320, 0, 276562260699626541509, 0, -32073434441440654231749, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Inspired by peculiar functional equations suggested by Michael Somos. Unexpectedly, the even-indexed terms are all zeros after index 2; see A107699 for odd-indexed terms. The self-COMPOSE equals A107701.

LINKS

Table of n, a(n) for n=1..34.

P. Majer, The functional equation f(f(x))=x+f(x)^2

FORMULA

G.f. satisfies: A(-A(-x)) = x.

G.f. satisfies: A( A(x) - 2*x^2 ) = x. [Paul D. Hanna, Aug 20 2008]

a(n)=T(n,1), T(n,m)=sum(j=max(2*m-n,0)..m-1,binomial(m,j)*2^(m-j-1) *T(n-j,2*(m-j)))-1/2*sum(i=m+1..n-1, T(n,i)*T(i,m)), n>m, T(n,n)=1. [Vladimir Kruchinin, Mar 12 2012]

MATHEMATICA

T[n_, n_] = 1; T[n_, m_] := T[n, m] = Sum[Binomial[m, j]*2^(m-j-1)*T[n-j, 2*(m-j)], {j, Max[2*m-n, 0], m-1}] - 1/2*Sum[T[n, i]*T[i, m], {i, m+1, n-1}]; Table[T[n, 1], {n, 1, 34}] (* Jean-Fran├žois Alcover, Mar 03 2014, after Vladimir Kruchinin *)

PROG

(PARI) {a(n)=local(A, B, F); A=x+x^2+x*O(x^n); if(n<1, 0, for(i=0, n, F=x+2*A^2; B=serreverse(A); A=(A+subst(B, x, F))/2); polcoeff(A, n, x))}

(Maxima)

T(n, m):=if n=m then 1 else sum(binomial(m, j)*2^(m-j-1)*T(n-j, 2*(m-j)), j, max(2*m-n, 0), m-1)-1/2*sum(T(n, i)*T(i, m), i, m+1, n-1);

makelist(T(n, 1), n, 1, 9); [From Vladimir Kruchinin, Mar 12 2012]

CROSSREFS

Cf. A107699, A107701.

Sequence in context: A269889 A058803 A193202 * A274107 A122688 A110685

Adjacent sequences:  A107697 A107698 A107699 * A107701 A107702 A107703

KEYWORD

sign

AUTHOR

Paul D. Hanna, May 21 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 03:45 EST 2016. Contains 278841 sequences.