login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107700 G.f. A(x) satisfies: A(A(x)) = x + 2*A(x)^2. 4
1, 1, 1, 0, -2, 0, 13, 0, -145, 0, 2328, 0, -49784, 0, 1358965, 0, -46076544, 0, 1902202515, 0, -94104681660, 0, 5503867176832, 0, -376096374571125, 0, 29714871818774044, 0, -2689473418781240320, 0, 276562260699626541509, 0, -32073434441440654231749, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Inspired by peculiar functional equations suggested by Michael Somos. Unexpectedly, the even-indexed terms are all zeros after index 2; see A107699 for odd-indexed terms. The self-COMPOSE equals A107701.

LINKS

Table of n, a(n) for n=1..34.

P. Majer,The functional equation f(f(x))=x+f(x)^2

FORMULA

G.f. satisfies: A(-A(-x)) = x.

G.f. satisfies: A( A(x) - 2*x^2 ) = x. [Paul D. Hanna, Aug 20 2008]

a(n)=T(n,1), T(n,m)=sum(j=max(2*m-n,0)..m-1,binomial(m,j)*2^(m-j-1) *T(n-j,2*(m-j)))-1/2*sum(i=m+1..n-1, T(n,i)*T(i,m)), n>m, T(n,n)=1. [Vladimir Kruchinin, Mar 12 2012]

MATHEMATICA

T[n_, n_] = 1; T[n_, m_] := T[n, m] = Sum[Binomial[m, j]*2^(m-j-1)*T[n-j, 2*(m-j)], {j, Max[2*m-n, 0], m-1}] - 1/2*Sum[T[n, i]*T[i, m], {i, m+1, n-1}]; Table[T[n, 1], {n, 1, 34}] (* Jean-Fran├žois Alcover, Mar 03 2014, after Vladimir Kruchinin *)

PROG

(PARI) {a(n)=local(A, B, F); A=x+x^2+x*O(x^n); if(n<1, 0, for(i=0, n, F=x+2*A^2; B=serreverse(A); A=(A+subst(B, x, F))/2); polcoeff(A, n, x))}

(Maxima)

T(n, m):=if n=m then 1 else sum(binomial(m, j)*2^(m-j-1)*T(n-j, 2*(m-j)), j, max(2*m-n, 0), m-1)-1/2*sum(T(n, i)*T(i, m), i, m+1, n-1);

makelist(T(n, 1), n, 1, 9); [From Vladimir Kruchinin, Mar 12 2012]

CROSSREFS

Cf. A107699, A107701.

Sequence in context: A013310 A058803 A193202 * A122688 A110685 A225480

Adjacent sequences:  A107697 A107698 A107699 * A107701 A107702 A107703

KEYWORD

sign

AUTHOR

Paul D. Hanna, May 21 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 28 15:16 EDT 2015. Contains 261125 sequences.