OFFSET
1,5
COMMENTS
LINKS
P. Majer, The functional equation f(f(x))=x+f(x)^2, Dec. 2010
FORMULA
G.f. satisfies: A(-A(-x)) = x.
G.f. satisfies: A( A(x) - 2*x^2 ) = x. [Paul D. Hanna, Aug 20 2008]
a(n)=T(n,1), T(n,m)=sum(j=max(2*m-n,0)..m-1,binomial(m,j)*2^(m-j-1) *T(n-j,2*(m-j)))-1/2*sum(i=m+1..n-1, T(n,i)*T(i,m)), n>m, T(n,n)=1. [Vladimir Kruchinin, Mar 12 2012]
MATHEMATICA
T[n_, n_] = 1; T[n_, m_] := T[n, m] = Sum[Binomial[m, j]*2^(m-j-1)*T[n-j, 2*(m-j)], {j, Max[2*m-n, 0], m-1}] - 1/2*Sum[T[n, i]*T[i, m], {i, m+1, n-1}]; Table[T[n, 1], {n, 1, 34}] (* Jean-François Alcover, Mar 03 2014, after Vladimir Kruchinin *)
PROG
(PARI) {a(n) = local(A, B, F); A=x+x^2+x*O(x^n); if(n<1, 0, for(i=0, n, F=x+2*A^2; B=serreverse(A); A=(A+subst(B, x, F))/2); polcoeff(A, n, x))}
(PARI) {a(n) = my(A); if( n<0, 0, A = x + O(x^2); for(k=2, n, A = truncate(A) + x * O(x^k); A += (x + A^2 - subst(A, x, A))/2); polcoeff(A, n) * 2^(n-1))}; /* Michael Somos, Dec 15 2017 */
(Maxima)
T(n, m):=if n=m then 1 else sum(binomial(m, j)*2^(m-j-1)*T(n-j, 2*(m-j)), j, max(2*m-n, 0), m-1)-1/2*sum(T(n, i)*T(i, m), i, m+1, n-1);
makelist(T(n, 1), n, 1, 9); /* Vladimir Kruchinin, Mar 12 2012 */
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 21 2005
STATUS
approved