login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107700 G.f. A(x) satisfies: A(A(x)) = x + 2*A(x)^2. 4
1, 1, 1, 0, -2, 0, 13, 0, -145, 0, 2328, 0, -49784, 0, 1358965, 0, -46076544, 0, 1902202515, 0, -94104681660, 0, 5503867176832, 0, -376096374571125, 0, 29714871818774044, 0, -2689473418781240320, 0, 276562260699626541509, 0, -32073434441440654231749, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Inspired by peculiar functional equations suggested by Michael Somos. Unexpectedly, the even-indexed terms are all zeros after index 2; see A107699 for odd-indexed terms. The self-COMPOSE equals A107701.

LINKS

Table of n, a(n) for n=1..34.

P. Majer,The functional equation f(f(x))=x+f(x)^2

FORMULA

G.f. satisfies: A(-A(-x)) = x.

G.f. satisfies: A( A(x) - 2*x^2 ) = x. [Paul D. Hanna, Aug 20 2008]

a(n)=T(n,1), T(n,m)=sum(j=max(2*m-n,0)..m-1,binomial(m,j)*2^(m-j-1) *T(n-j,2*(m-j)))-1/2*sum(i=m+1..n-1, T(n,i)*T(i,m)), n>m, T(n,n)=1. [Vladimir Kruchinin, Mar 12 2012]

MATHEMATICA

T[n_, n_] = 1; T[n_, m_] := T[n, m] = Sum[Binomial[m, j]*2^(m-j-1)*T[n-j, 2*(m-j)], {j, Max[2*m-n, 0], m-1}] - 1/2*Sum[T[n, i]*T[i, m], {i, m+1, n-1}]; Table[T[n, 1], {n, 1, 34}] (* Jean-Fran├žois Alcover, Mar 03 2014, after Vladimir Kruchinin *)

PROG

(PARI) {a(n)=local(A, B, F); A=x+x^2+x*O(x^n); if(n<1, 0, for(i=0, n, F=x+2*A^2; B=serreverse(A); A=(A+subst(B, x, F))/2); polcoeff(A, n, x))}

(Maxima)

T(n, m):=if n=m then 1 else sum(binomial(m, j)*2^(m-j-1)*T(n-j, 2*(m-j)), j, max(2*m-n, 0), m-1)-1/2*sum(T(n, i)*T(i, m), i, m+1, n-1);

makelist(T(n, 1), n, 1, 9); [From Vladimir Kruchinin, Mar 12 2012]

CROSSREFS

Cf. A107699, A107701.

Sequence in context: A013310 A058803 A193202 * A122688 A110685 A225480

Adjacent sequences:  A107697 A107698 A107699 * A107701 A107702 A107703

KEYWORD

sign

AUTHOR

Paul D. Hanna, May 21 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 18 18:43 EDT 2014. Contains 240732 sequences.