%I #44 Sep 08 2022 08:45:18
%S 0,1,1,2,3,5,8,12,20,31,50,79,126,200,318,506,804,1279,2033,3233,5140,
%T 8173,12995,20662,32853,52236,83056,132059,209975,333861,530841,
%U 844040,1342028,2133832,3392804,5394577,8577406,13638122,21684687,34478769
%N a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7).
%H G. C. Greubel, <a href="/A107479/b107479.txt">Table of n, a(n) for n = 0..1000</a>
%H Peter Borwein and Kevin G. Hare, <a href="http://docserver.carma.newcastle.edu.au/225/">Some computations on Pisot and Salem numbers</a>, 2000, table 1, p. 7.
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,1,1,1,1,1).
%F Lim_{n->infinity} a(n)/a(n-1) = 1.5900053739...
%F G.f.: x*(1 + x)*(1 - x + x^2)*(1 + x + x^2)/(1 - x^2 - x^3 - x^4 - x^5 - x^6 - x^7).
%t LinearRecurrence[{0,1,1,1,1,1,1}, {0,1,1,2,3,5,8}, 40] (* _Harvey P. Dale_, Sep 26 2012 *)
%t CoefficientList[Series[x (1 + x) (1 + x + x^2) (x^2 - x + 1)/(1 - x^2 - x^3 - x^4 - x^5 - x^6 - x^7), {x, 0, 40}], x] (* _Vincenzo Librandi_, Oct 16 2014 *)
%o (PARI) concat(0, Vec(x*(1+x)*(1+x+x^2)*(x^2-x+1)/(1-x^2-x^3-x^4-x^5-x^6-x^7) + O(x^60))) \\ _Michel Marcus_, Oct 16 2014
%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x)*(1+x+x^2)*(x^2-x+1)/(1-x^2-x^3-x^4-x^5-x^6-x^7) )); // _G. C. Greubel_, Nov 03 2018
%Y Cf. A013984.
%Y Cf. A107480, A109538, A109543, A109544, A114749, A125950, A130844, A143335, A147851.
%K nonn,easy
%O 0,4
%A _Roger L. Bagula_, May 27 2005
%E Definition replaced by recurrence - The Associate Editors of the OEIS, Oct 02 2009
%E Spelling and formatting corrected, index link added - _Charles R Greathouse IV_, Jan 26 2011