login
A107362
Sequence A={a(n),n=0,1,2,3,...} such that the subsequence S1={a(n)|n mod 5=0,3} is identical to A and S2=S\S1 (the complement of S1 in A) is identical to A except with the first term omitted.
0
1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
OFFSET
0,2
FORMULA
a(0)=1, a(1)=2, a(2)=1 and, for n>2, a(n)=a(2[n/5] if n=0 mod 5, a(n)=a(n-2[n/5]) if n=1, 2 mod 5, a(n)=a(2[n/5]+1) if n=3 mod 5 and a(n)=a(n-2[n/5]-1) if n=4 mod 5.
EXAMPLE
S1={a(0),a(3),a(5),a(8),a(10),...}={1,2,1,2,2,...}=A. Similarly for A\S1.
CROSSREFS
Sequence in context: A001468 A014675 A308186 * A166332 A022303 A113189
KEYWORD
eigen,nonn
AUTHOR
John W. Layman, May 24 2005
STATUS
approved