%I #20 Sep 08 2022 08:45:18
%S 3,17,41,59,83,89,131,227,251,257,353,419,467,521,563,587,593,761,857,
%T 881,929,971,1049,1091,1097,1193,1217,1259,1307,1361,1427,1433,1553,
%U 1571,1601,1697,1721,1811,1889,1907,1931,1979,2099,2243,2267,2273
%N Primes of the form 3x^2 + 14y^2.
%C Discriminant = -168. See A107132 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A107147/b107147.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {3, 17, 41, 59, 83, 89, 131} (mod 168). - _T. D. Noe_, May 02 2008
%t QuadPrimes2[3, 0, 14, 10000] (* see A106856 *)
%o (Magma) [ p: p in PrimesUpTo(3000) | p mod 168 in {3, 17, 41, 59, 83, 89, 131} ]; // _Vincenzo Librandi_, Jul 24 2012
%o (PARI) list(lim)=my(v=List([3]), s=[17, 41, 59, 83, 89, 131]); forprime(p=17, lim, if(setsearch(s, p%168), listput(v, p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 09 2017
%Y Cf. A139827.
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 13 2005