login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106691
Expansion of g.f. (1+x-2*x^2+x^3+x^4)/((1-x)^2*(1+x)^2*(1+2*x)^2).
1
1, -3, 8, -17, 36, -71, 140, -269, 516, -979, 1852, -3481, 6516, -12127, 22444, -41253, 75236, -135915, 242716, -427185, 737876, -1242743, 2019468, -3106877, 4349636, -4971011, 2485500, 9942071, -49710284, 159072881, -437450388, 1113510059, -2704238684, 6362914533, -14634703396
OFFSET
0,2
COMMENTS
Floretion Algebra Multiplication Program, FAMP Code: 2jbasekrokseq[ - .25'i - .25i' + 'ii' + .25'jk' + .25'kj'], RokType: Y[sqa.Findk()] = Y[sqa.Findk()] - p (internal program code)
FORMULA
From G. C. Greubel, Sep 09 2021: (Start)
a(n) = (1/54)*(3*n +4 -27*(-1)^n*(n+4) +(-2)^(n+1)*(3*n-79)).
E.g.f.: (1/54)*((4 +3*x)*exp(x) -27*(4 -x)*exp(-x) + 2*(79 +6*x)*exp(-2*x)). (End)
MATHEMATICA
CoefficientList[Series[(1+x-2x^2+x^3+x^4)/((1-x)^2(1+x)^2(1+2x)^2), {x, 0, 40}], x] (* or *) LinearRecurrence[{-4, -2, 8, 7, -4, -4}, {1, -3, 8, -17, 36, -71}, 40] (* Harvey P. Dale, Dec 21 2015 *)
PROG
(Magma) [(1/54)*(3*n +4 -27*(-1)^n*(n+4) +(-2)^(n+1)*(3*n-79)): n in [0..40]]; // G. C. Greubel, Sep 09 2021
(SageMath) [(1/54)*(3*n +4 -27*(-1)^n*(n+4) +(-2)^(n+1)*(3*n-79)) for n in (0..40)] # G. C. Greubel, Sep 09 2021
CROSSREFS
Cf. A002697.
Sequence in context: A112523 A369734 A147419 * A140176 A238496 A097391
KEYWORD
sign,easy
AUTHOR
Creighton Dement, May 13 2005
STATUS
approved