

A106614


Numerator of n/(n+13).


4



0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 2, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 3, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 4, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 5, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

In general, the numerators of n/(n+p) for prime p and n>=0, form a sequence with the g.f.: x/(1x)^2  (p1)*x^p/(1x^p)^2.  Paul D. Hanna, Jul 27 2005


LINKS

Table of n, a(n) for n=0..75.


FORMULA

G.f.: x/(1x)^2  12*x^13/(1x^13)^2.  Paul D. Hanna, Jul 27 2005
Dirichlet g.f. zeta(s1)*(112/13^s).  R. J. Mathar, Apr 18 2011


MATHEMATICA

f[n_]:=Numerator[n/(n+13)]; Array[f, 100, 0] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2011*)


PROG

(Sage) [lcm(n, 13)/13for n in xrange(0, 76)] # [From Zerinvary Lajos, Jun 09 2009]
(MAGMA) [Numerator(n/(n+13)): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011


CROSSREFS

Sequence in context: A053833 A167973 A087999 * A043272 A071523 A070696
Adjacent sequences: A106611 A106612 A106613 * A106615 A106616 A106617


KEYWORD

nonn,frac,mult


AUTHOR

N. J. A. Sloane, May 15 2005


STATUS

approved



