login
Six-symbol substitution based on doubling the Rauzy substitution : n=1 characteristic polynomial: x^6-3*x^4+3*x^2-1.
0

%I #4 Mar 30 2012 17:34:15

%S 1,4,5,6,2,3,1,2,3,4,5,4,5,6,4,5,2,3,2,3,1,2,3,2,3,4,5,4,5,4,5,6,4,5,

%T 4,5,2,3,2,3,2,3,1,2,3,2,3,2,3,4,5,4,5,4,5,4,5,6,4,5,4,5,4,5,2,3,2,3,

%U 2,3,2,3,1,2,3,2,3,2,3,2,3,4,5,4,5,4,5,4,5,4,5,6,4,5,4,5,4,5,4,5,2,3,2,3,2

%N Six-symbol substitution based on doubling the Rauzy substitution : n=1 characteristic polynomial: x^6-3*x^4+3*x^2-1.

%C Triangular form: {1}, {4, 5, 6}, {2, 3, 1, 2, 3}, {4, 5, 4, 5, 6, 4, 5}, {2, 3, 2, 3, 1, 2, 3, 2, 3}, {4, 5, 4, 5, 4, 5, 6, 4, 5, 4, 5},

%D Curtis McMullen, Prym varieties and Teichmuller curves.

%F 1->{4.5.6}, 2->{4}*n, 3->{5}, 4->{2}, 5->{3}.n 6->{1, 2, 3}

%t n0=6 n=1 s[1] = {4, 5, 6}; s[2] = Table[If[i <= n, 4, {}], {i, 1, n0}]; s[3] = Table[If[i <= n, 5, {}], {i, 1, n0}]; s[4] = Table[If[i <= n, 2, {}], {i, 1, n0}]; s[5] = Table[If[i <= n, 3, {}], {i, 1, n0}]; s[6] = {1, 2, 3}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = Table[p[i], {i, 0, 10}]; MatrixForm[aa] aaa = Flatten[aa]

%K nonn,uned

%O 0,2

%A _Roger L. Bagula_, May 10 2005