login
A105720
Triangular matchstick numbers in the class of prime numbers: sum of n-th and next n primes.
7
5, 15, 36, 67, 112, 169, 240, 323, 424, 539, 662, 803, 964, 1133, 1312, 1523, 1746, 1987, 2246, 2519, 2808, 3119, 3436, 3787, 4154, 4529, 4920, 5337, 5770, 6219, 6682, 7173, 7672, 8203, 8760, 9323, 9912, 10517, 11140, 11783, 12450, 13135, 13836
OFFSET
1,1
COMMENTS
Terms are squares at only(?) three values of n = 3, 6, 4072: corresponding terms are 6^2, 13^2, and 15735^2.
Terms are prime at many values of n; at n = 1, 4, 16, 18, 22, 36, 40, 44, 52 they are 5, 67, 1523, 1987, 3119, 9323, 11783, 14551, 21019.
LINKS
FORMULA
a(n) = p(n) + p(n+1) + ... + p(2n-1) + p(2n), where p(k)=k-th prime.
a(1)=5; for n > 1, a(n) = a(n-1) - prime(n-1) + prime(2*n-1) + prime(2*n). - Zak Seidov, Oct 18 2009
MATHEMATICA
a[n_]:=Plus@@Prime[Range[n, 2n]]
a=5; s={5}; Do[a=a-Prime[n]+Prime[2n+1]+Prime[2n+2]; AppendTo[s, a], {n, 10^5}]; (* Zak Seidov, Oct 18 2009 *)
Table[Total[Prime[Range[n, 2n]]], {n, 50}] (* Harvey P. Dale, Jun 10 2014 *)
PROG
(Magma) [ &+[ NthPrime(n+i): i in [0..n] ]: n in [1..50] ]; // Bruno Berselli, Jul 08 2011
(PARI) a(n)=my(s=0); forprime(p=prime(n), prime(2*n), s+=p); s \\ Charles R Greathouse IV, Jul 08 2011
CROSSREFS
Cf. A045943 (triangular matchstick numbers: 3*n*(n+1)/2).
Cf. A045943.
Cf. A166619, A166620. - Zak Seidov, Oct 18 2009
Sequence in context: A333932 A065780 A220480 * A174655 A184631 A366971
KEYWORD
nonn
AUTHOR
Zak Seidov, May 04 2005
STATUS
approved