login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105720
Triangular matchstick numbers in the class of prime numbers: sum of n-th and next n primes.
7
5, 15, 36, 67, 112, 169, 240, 323, 424, 539, 662, 803, 964, 1133, 1312, 1523, 1746, 1987, 2246, 2519, 2808, 3119, 3436, 3787, 4154, 4529, 4920, 5337, 5770, 6219, 6682, 7173, 7672, 8203, 8760, 9323, 9912, 10517, 11140, 11783, 12450, 13135, 13836
OFFSET
1,1
COMMENTS
Terms are squares at only(?) three values of n = 3, 6, 4072: corresponding terms are 6^2, 13^2, and 15735^2.
Terms are prime at many values of n; at n = 1, 4, 16, 18, 22, 36, 40, 44, 52 they are 5, 67, 1523, 1987, 3119, 9323, 11783, 14551, 21019.
LINKS
FORMULA
a(n) = p(n) + p(n+1) + ... + p(2n-1) + p(2n), where p(k)=k-th prime.
a(1)=5; for n > 1, a(n) = a(n-1) - prime(n-1) + prime(2*n-1) + prime(2*n). - Zak Seidov, Oct 18 2009
MATHEMATICA
a[n_]:=Plus@@Prime[Range[n, 2n]]
a=5; s={5}; Do[a=a-Prime[n]+Prime[2n+1]+Prime[2n+2]; AppendTo[s, a], {n, 10^5}]; (* Zak Seidov, Oct 18 2009 *)
Table[Total[Prime[Range[n, 2n]]], {n, 50}] (* Harvey P. Dale, Jun 10 2014 *)
PROG
(Magma) [ &+[ NthPrime(n+i): i in [0..n] ]: n in [1..50] ]; // Bruno Berselli, Jul 08 2011
(PARI) a(n)=my(s=0); forprime(p=prime(n), prime(2*n), s+=p); s \\ Charles R Greathouse IV, Jul 08 2011
CROSSREFS
Cf. A045943 (triangular matchstick numbers: 3*n*(n+1)/2).
Cf. A045943.
Cf. A166619, A166620. - Zak Seidov, Oct 18 2009
Sequence in context: A333932 A065780 A220480 * A174655 A184631 A366971
KEYWORD
nonn
AUTHOR
Zak Seidov, May 04 2005
STATUS
approved