%I
%S 2,3,3,4,4,6,6,6
%N Highest minimal Hamming distance of any Type 4^E Euclidean linear selfdual code over GF(4) of length 2n.
%C There is a related sequence which is presently too short to include: Highest minimal Lee distance of any Type (4^E)_II Euclidean linear even selfdual code over GF(4) of length 4n. This begins 4, 4, 8, 8, 8, then either 8 or 12, 12, 12, ...
%D P. Gaborit and A. Otmani, Experimental construction of selfdual codes, Preprint.
%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">SelfDual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%H P. Gaborit, <a href="http://www.unilim.fr/pages_perso/philippe.gaborit/SD/">Tables of SelfDual Codes</a>
%H E. M. Rains and N. J. A. Sloane, Selfdual codes, pp. 177294 of Handbook of Coding Theory, Elsevier, 1998; (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).
%Y Cf. A105674, A105675, A105676, A105678, A016729, A066016, A105681, A105682.
%K nonn
%O 1,1
%A _N. J. A. Sloane_, May 06 2005
%E The sequence continues: a(9) = either 6 or 7, a(10) = a(11) = 8, a(12) = 8, 9 or 10, ...
