

A105674


Highest minimal distance of any Type I (strictly) singlyeven binary selfdual code of length 2n.


19



2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 8, 6, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

F. J. MacWilliams and N. J. A. Sloane, The Theory of ErrorCorrecting Codes, Elsevier/North Holland, 1977.


LINKS

Table of n, a(n) for n=1..27.
G. Nebe, E. M. Rains and N. J. A. Sloane, SelfDual Codes and Invariant Theory, Springer, Berlin, 2006.
P. Gaborit, Tables of SelfDual Codes
E. M. Rains and N. J. A. Sloane, Selfdual codes, pp. 177294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).


EXAMPLE

At length 8 the only strictly Type I selfdual code is {00,11}^4, which has d=2, so a(4) = 2.


CROSSREFS

Cf. A105675, A105676, A105677, A105678, A016729, A066016, A105681, A105682.
Cf. also A105685 for the number of such codes.
Sequence in context: A064133 A295101 A160675 * A130496 A187243 A001299
Adjacent sequences: A105671 A105672 A105673 * A105675 A105676 A105677


KEYWORD

nonn,nice


AUTHOR

N. J. A. Sloane, May 06 2005


EXTENSIONS

The sequence continues: a(28) = either 10 or 12, then a(58) = 10, a(60) through a(68) = 12, ...


STATUS

approved



