

A105658


Product_{i=1..n} i^i / denominator( Sum_{j=1..n} j(j+1)/2 / Product_{k=0..i1} j!/k!) ).


7



1, 1, 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, 143, 7, 15, 104, 935, 9, 19, 10, 21, 11, 4025, 3900, 325, 3289, 27, 14, 29, 15, 31, 368, 33, 17, 35, 18, 185, 19, 39, 380, 451, 399, 215, 770, 45, 23, 29563, 24, 12397, 725, 51, 26, 1537, 837, 2365, 1036, 285, 377, 2537, 30
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

Most of the time a(2n1)=2n1, but a(2n1)!=2n1 for 2n1 = 13,17,23,25,37,41,43,47,49,53,55,57,59,61,63,...
Most of the time a(2n)=n, but a(2n)!=n for 2n = 16,24,26,32,40,42,44,50,54,56,58,64,84,86,96,100,102,104,...


LINKS

Table of n, a(n) for n=0..60.


EXAMPLE

a(3) = 108/36 = 3.


MATHEMATICA

f[n_] := Product[k^k, {k, 1, n}]/ Denominator[Sum[i(i + 1)/2/Product[i!/j!, {j, 0, i  1}]), {i, n}]]; Table[ f[n], {n, 0, 61}] (* Robert G. Wilson v, Apr 18 2005 *)


CROSSREFS

Cf. A002109  hyperfactorial numbers.
Sequence in context: A176447 A145051 A026741 * A083242 A111618 A107128
Adjacent sequences: A105655 A105656 A105657 * A105659 A105660 A105661


KEYWORD

nonn


AUTHOR

Jess E. Boling (tdbpeekitup(AT)yahoo.com), Apr 17 2005


EXTENSIONS

Edited by Robert G. Wilson v, Apr 18 2005


STATUS

approved



