This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105264 Theta(1) Pisot substitution level 7 : characteristic polynomial x^4-x^3-1=0. 0
 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 4, 1, 2, 3, 3, 4, 3, 4, 4, 4, 1, 3, 4, 4, 4, 1, 4, 4, 1, 4, 1, 4, 1, 2, 2, 3, 3, 4, 3, 4, 4, 4, 1, 3, 4, 4, 4, 1, 4, 4, 1, 4, 1, 4, 1, 2, 3, 4, 4, 4, 1, 4, 4, 1, 4, 1, 4, 1, 2, 4, 4, 1, 4, 1, 4, 1, 2, 4, 1, 4, 1, 2, 4, 1, 2, 4, 1, 2, 3, 2, 3, 3, 4, 3, 4, 4, 4, 1, 3, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Program for getting Polynomial: s[1] = {2, 0, 0, 0}; s[2] = {3, 0, 0, 0}; s[3] = {4, 0, 0, 0}; s[4] = {4, 1, 0, 0}; M = Table[Table[Count[s[j], i], {i, 1, n0}], {j, 1, n0}] Det[M - x*IdentityMatrix[n0]] LINKS Eric Weisstein's World of Mathematics, Pisot Number FORMULA 1->{2}, 2->{3}, 3->{4}, 4->{4, 1} MATHEMATICA s[1] = {2}; s[2] = {3}; s[3] = {4}; s[4] = {4, 1}; t[a_] := Join[a, Flatten[s /@ a]]; p[0] = {1}; p[1] = t[{1}]; p[n_] := t[p[n - 1]] aa = p[7] CROSSREFS Sequence in context: A217865 A185166 A211100 * A063787 A182745 A129843 Adjacent sequences:  A105261 A105262 A105263 * A105265 A105266 A105267 KEYWORD nonn,uned AUTHOR Roger Bagula, Apr 15 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .