login
A105225
a(n+3) = 2a(n+2) - 3a(n+1) + 2a(n); a(0) = 1, a(1) = -1, a(2) = -2.
1
1, -1, -2, 1, 6, 5, -6, -15, -2, 29, 34, -23, -90, -43, 138, 225, -50, -499, -398, 601, 1398, 197, -2598, -2991, 2206, 8189, 3778, -12599, -20154, 5045, 45354, 35265, -55442, -125971, -15086, 236857, 267030, -206683, -740742, -327375, 1154110, 1808861, -499358, -4117079, -3118362, 5115797
OFFSET
0,3
COMMENTS
Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e]
FORMULA
a(n) - a(n+1) = A002249(n).
a(n) = (A002249(n+1) + 1)/2.
From Harvey P. Dale, Jul 23 2012: (Start)
G.f.: -(3*x^2-3*x+1)/((x-1)*(2*x^2-x+1)).
a(n)=1/2*(1+(1/2*(1-I*Sqrt[7]))^n+(1/2*(1+I*Sqrt[7]))^n). (End)
MATHEMATICA
LinearRecurrence[{2, -3, 2}, {1, -1, -2}, 50] (* or *) CoefficientList[ Series[ (-3*x^2+3*x-1)/(2*x^3-3*x^2+2*x-1), {x, 0, 50}], x] (* Harvey P. Dale, Jul 23 2012 *)
CROSSREFS
Sequence in context: A331435 A159927 A176443 * A011018 A346963 A156993
KEYWORD
sign,easy
AUTHOR
Creighton Dement, Apr 14 2005
STATUS
approved