login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105225 a(n+3) = 2a(n+2) - 3a(n+1) + 2a(n); a(0) = 1, a(1) = -1, a(2) = -2. 1
1, -1, -2, 1, 6, 5, -6, -15, -2, 29, 34, -23, -90, -43, 138, 225, -50, -499, -398, 601, 1398, 197, -2598, -2991, 2206, 8189, 3778, -12599, -20154, 5045, 45354, 35265, -55442, -125971, -15086, 236857, 267030, -206683, -740742, -327375, 1154110, 1808861, -499358, -4117079, -3118362, 5115797 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..45.

Robert Munafo, Sequences Related to Floretions

Index entries for linear recurrences with constant coefficients, signature (2, -3, 2).

FORMULA

a(n) - a(n+1) = A002249(n)

G.f.: (-3*x^2+3*x-1)/(2*x^3-3*x^2+2*x-1) -- From Harvey P. Dale, Jul 23 2012

a(n)=1/2*(1+(1/2*(1-I*Sqrt[7]))^n+(1/2*(1+I*Sqrt[7]))^n) -- From Harvey P. Dale, Jul 23 2012

MATHEMATICA

LinearRecurrence[{2, -3, 2}, {1, -1, -2}, 50] (* or *) CoefficientList[ Series[ (-3*x^2+3*x-1)/(2*x^3-3*x^2+2*x-1), {x, 0, 50}], x] (* Harvey P. Dale, Jul 23 2012 *)

PROG

Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e]

CROSSREFS

Cf. A002249, A014551.

Equals (A002249(n+1) + 1)/2.

Equals (1/2) (A002249(n+1) + 1).

Sequence in context: A021826 A159927 A176443 * A011018 A156993 A292667

Adjacent sequences:  A105222 A105223 A105224 * A105226 A105227 A105228

KEYWORD

sign

AUTHOR

Creighton Dement, Apr 14 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 16:08 EST 2017. Contains 295003 sequences.