This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105225 a(n+3) = 2a(n+2) - 3a(n+1) + 2a(n); a(0) = 1, a(1) = -1, a(2) = -2. 1
 1, -1, -2, 1, 6, 5, -6, -15, -2, 29, 34, -23, -90, -43, 138, 225, -50, -499, -398, 601, 1398, 197, -2598, -2991, 2206, 8189, 3778, -12599, -20154, 5045, 45354, 35265, -55442, -125971, -15086, 236857, 267030, -206683, -740742, -327375, 1154110, 1808861, -499358, -4117079, -3118362, 5115797 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Robert Munafo, Sequences Related to Floretions Index entries for linear recurrences with constant coefficients, signature (2, -3, 2). FORMULA a(n) - a(n+1) = A002249(n) G.f.: (-3*x^2+3*x-1)/(2*x^3-3*x^2+2*x-1) -- From Harvey P. Dale, Jul 23 2012 a(n)=1/2*(1+(1/2*(1-I*Sqrt[7]))^n+(1/2*(1+I*Sqrt[7]))^n) -- From Harvey P. Dale, Jul 23 2012 MATHEMATICA LinearRecurrence[{2, -3, 2}, {1, -1, -2}, 50] (* or *) CoefficientList[ Series[ (-3*x^2+3*x-1)/(2*x^3-3*x^2+2*x-1), {x, 0, 50}], x] (* Harvey P. Dale, Jul 23 2012 *) PROG Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e] CROSSREFS Cf. A002249, A014551. Equals (A002249(n+1) + 1)/2. Equals (1/2) (A002249(n+1) + 1). Sequence in context: A021826 A159927 A176443 * A011018 A156993 A292667 Adjacent sequences:  A105222 A105223 A105224 * A105226 A105227 A105228 KEYWORD sign AUTHOR Creighton Dement, Apr 14 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 21 16:08 EST 2017. Contains 295003 sequences.