login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105225
a(n+3) = 2a(n+2) - 3a(n+1) + 2a(n); a(0) = 1, a(1) = -1, a(2) = -2.
1
1, -1, -2, 1, 6, 5, -6, -15, -2, 29, 34, -23, -90, -43, 138, 225, -50, -499, -398, 601, 1398, 197, -2598, -2991, 2206, 8189, 3778, -12599, -20154, 5045, 45354, 35265, -55442, -125971, -15086, 236857, 267030, -206683, -740742, -327375, 1154110, 1808861, -499358, -4117079, -3118362, 5115797
OFFSET
0,3
COMMENTS
Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e]
FORMULA
a(n) - a(n+1) = A002249(n).
a(n) = (A002249(n+1) + 1)/2.
From Harvey P. Dale, Jul 23 2012: (Start)
G.f.: -(3*x^2-3*x+1)/((x-1)*(2*x^2-x+1)).
a(n)=1/2*(1+(1/2*(1-I*Sqrt[7]))^n+(1/2*(1+I*Sqrt[7]))^n). (End)
MATHEMATICA
LinearRecurrence[{2, -3, 2}, {1, -1, -2}, 50] (* or *) CoefficientList[ Series[ (-3*x^2+3*x-1)/(2*x^3-3*x^2+2*x-1), {x, 0, 50}], x] (* Harvey P. Dale, Jul 23 2012 *)
CROSSREFS
Sequence in context: A331435 A159927 A176443 * A011018 A346963 A156993
KEYWORD
sign,easy
AUTHOR
Creighton Dement, Apr 14 2005
STATUS
approved