%I #3 Mar 31 2012 19:54:57
%S 1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,5,5,6,6,7,7,8,8,8,10,10,11,11,13,13,
%T 14,14,14,16,16,18,18,20,20,22,23,23,25,25,28,30,30,33,35,35,38,39,43,
%U 43,46,46,49,51,51,55,56,60,61
%N Number of partitions of n in which both even and odd squares occur with multiplicity 1. There is no restriction on the parts which are twice odd squares.
%F G.f.: product_{k>0}((1+x^(2k)^2))/(1-x^(2k-1)^2)).
%e E.g. a(21)=7 because we can write 21 as 18+2+1=16+4+1=16+2+2+1=9+4+2+2+2+2=9+2+2+2+2+2+2=4+2+2+2+2+2+2+2+2+1=2+2+2+2+2+2+2+2+2+2+1.
%p series(product((1+x^((2*k)^2))/(1-x^((2*k-1)^2)),k=1..100),x=0,100);
%K easy,nonn
%O 0,5
%A _Noureddine Chair_, Mar 01 2005