OFFSET
3,1
LINKS
Colin Barker, Table of n, a(n) for n = 3..1000
S. Kurz, k-polyominoes.
Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-1,0,0,0,0,0,1,-2,2,-2,2,-2,1).
FORMULA
See the link for a formula.
G.f.: -x^3*(x^17 -2*x^16 +3*x^15 -4*x^14 +4*x^13 -4*x^12 +4*x^11 -2*x^10 +2*x^9 -2*x^8 +4*x^7 -x^6 +x^5 +3*x^4 -3*x^3 +3*x^2 -x +3) / ((x -1)^3*(x +1)*(x^2 -x +1)^2*(x^2 +1)*(x^2 +x +1)^2*(x^4 -x^2 +1)). - Colin Barker, Jan 19 2015
EXAMPLE
a(3)=3 because there are 3 polyiamonds consisting of 4 triangles and a(4)=5 because there are 5 polyominoes consisting of 4 squares.
MATHEMATICA
LinearRecurrence[{2, -2, 2, -2, 2, -1, 0, 0, 0, 0, 0, 1, -2, 2, -2, 2, -2, 1}, {3, 5, 7, 7, 7, 11, 14, 19, 23, 23, 23, 29, 35, 42, 48, 47, 48, 57}, 80] (* Harvey P. Dale, Feb 11 2020 *)
PROG
(PARI) Vec(-x^3*(x^17 -2*x^16 +3*x^15 -4*x^14 +4*x^13 -4*x^12 +4*x^11 -2*x^10 +2*x^9 -2*x^8 +4*x^7 -x^6 +x^5 +3*x^4 -3*x^3 +3*x^2 -x +3)/((x -1)^3*(x +1)*(x^2 -x +1)^2*(x^2 +1)*(x^2 +x +1)^2*(x^4 -x^2 +1)) + O(x^100)) \\ Colin Barker, Jan 19 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Sascha Kurz, Feb 07 2005
STATUS
approved