%I #33 Aug 21 2023 10:29:32
%S 7,6,6,3,1,1,8,9,6,0,6,2,4,6,3,1,9,6,8,7,1,6,0,5,3,9,2,0,2,7,9,7,3,3,
%T 4,1,2,0,2,1,0,8,2,1,2,9,3,2,0,1,7,0,0,1,7,4,7,4,0,7,0,1,7,9,4,6,8,4,
%U 1,1,6,1,9,8,6,6,1,5,8,5,7,3,9,7,5,2,2,5,2,1,4,6,6,2,8,6,8,9,8,1
%N Decimal expansion of the volume of a dodecahedron with each edge of unit length.
%C Equals 5*phi^3/(2*xi^2), phi being the golden ratio (A001622) and xi its associate (A182007). - _Stanislav Sykora_, Nov 23 2013
%H Ivan Panchenko, <a href="/A102769/b102769.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Dodecahedron.html">Dodecahedron</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Platonic_solid">Platonic solid</a>
%H <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>
%F Equals (15 + 7 sqrt(5)) / 4.
%F Equals (sqrt(5)/2)*(phi)^4, where phi is the golden ratio. - _G. C. Greubel_, Jul 06 2017
%e 7.663118960624631968716053920...
%p evalf((15+7*sqrt(5))/4,100); # _Wesley Ivan Hurt_, Jan 29 2017
%t RealDigits[(Sqrt[5]/2)*(GoldenRatio)^4, 10, 50][[1]] (* _G. C. Greubel_, Jul 06 2017 *)
%o (PARI) (7*sqrt(5)+15)/4 \\ _Charles R Greathouse IV_, Apr 25 2016
%Y Cf. A001622 (phi), A182007 (phi associate), A020829 (regular tetrahedron volume), A131594 (regular octahedron volume), A102208 (regular icosahedron volume).
%K nonn,cons
%O 1,1
%A Bryan Jacobs (bryanjj(AT)gmail.com), Feb 10 2005