login
A102328
Primes p such that the largest prime divisor of p^6 + 1 is less than p.
2
30977, 69127, 104681, 109807, 114671, 141637, 146057, 160319, 160639, 170371, 171169, 176087, 211723, 216119, 217081, 319321, 381673, 389083, 390151, 416219, 437401, 484609, 492257, 525571, 564713, 565241, 574127, 591601, 612173, 621259
OFFSET
1,1
LINKS
FORMULA
Solutions to {A006530(p^6+1) < p} where p is a prime number.
EXAMPLE
p = 30977, p^6 + 1 = 883560179055825771003237890 = 2*5*13*37*61*113*181*13921*18517*22189*25741, so the largest prime factor is 25741 < p = 30977.
MATHEMATICA
Select[Prime[Range[60000]], Max[PrimeFactorList[1 + #^6]] < # &] (* Ray Chandler, Jan 08 2005 *)
PROG
(PARI) is(k) = isprime(k) && vecmax(factor(k^6+1)[, 1]) < k; \\ Amiram Eldar, Jun 21 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 05 2005
EXTENSIONS
Extended by Ray Chandler, Jan 08 2005
STATUS
approved