login
The first summation of row 5 of Euler's triangle - a row that will recursively accumulate to the power of 5.
6

%I #24 Jun 29 2023 12:27:21

%S 1,27,93,119,120,120,120,120,120,120,120,120,120,120,120,120,120,120,

%T 120,120,120,120,120,120,120,120,120,120,120,120,120,120,120,120,120

%N The first summation of row 5 of Euler's triangle - a row that will recursively accumulate to the power of 5.

%D Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 533.

%H D. J. Pengelley, <a href="http://www.math.nmsu.edu/~davidp/bridge.pdf">The bridge between the continuous and the discrete via original sources in Study the Masters: The Abel-Fauvel Conference</a> [pdf], Kristiansand, 2002, (ed. Otto Bekken et al), National Center for Mathematics Education, University of Gothenburg, Sweden, in press.

%H C. Rossiter, <a href="http://noticingnumbers.net/300SeriesCube.htm">Depictions, Explorations and Formulas of the Euler/Pascal Cube</a>.

%H Eric Weisstein's World of Mathematics <a href="http://mathworld.wolfram.com/WorpitzkysIdentity.html">Worpitzky's Identity of 1883</a>.

%H Eric Weisstein's World of Mathematics <a href="http://mathworld.wolfram.com/EulerianNumber.html">Eulerian Number</a>.

%H Eric Weisstein's World of Mathematics <a href="http://mathworld.wolfram.com/NexusNumber.html">Nexus number</a>.

%H Eric Weisstein's World of Mathematics <a href="http://mathworld.wolfram.com/FiniteDifference.html">Finite Differences</a>.

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).

%F a(n) = 120, n>4.

%F a(n) = Sum_{j=1..m} Eulerian(m, j-1)*binomial(m+n-j+r, m+r], with m = 5, r = -5.

%F a(n) = Sum_{j=0..n+1} (-1)^j*binomial(m+1-z, j)*(n-j+1)^n, with m = 5, z = 1.

%F G.f.: x*(1+26*x+66*x^2+26*x^3+x^4)/(1-x). - _Colin Barker_, Mar 01 2012

%t MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}]; Table[MagicNKZ, {n, 5, 5}, {z, 1, 1}, {k, 0, 34}]

%t (* or *)

%t SeriesAtLevelR = Sum[Eulerian[n, i-1]*Binomial[n+x-i+r, n+r], {i,1,n}]; Table[SeriesAtLevelR, {n, 5, 5}, {r, -5, -5}, {x, 5, 35}]

%o (PARI) {a(n) = if(n==1, 1, if(n==2, 27, if(n==3, 93, if(n==4, 119, 120))) )}; \\ _G. C. Greubel_, May 07 2019

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1+26*x+66*x^2+26*x^3+x^4)/(1-x) )); // _G. C. Greubel_, May 07 2019

%o (Sage) a=(x*(1+26*x+66*x^2+26*x^3+x^4)/(1-x)).series(x, 40).coefficients(x, sparse=False); a[1:] # _G. C. Greubel_, May 07 2019

%Y Within the "cube" of related sequences with construction based upon MaginNKZ formula, with n downward, k rightward and z backward: Before: this sequence, A101095, A101096, A101098, A022521, A000584, A000539, A101092, A101099. Above: A101104, this sequence.

%Y Within the "cube" of related sequences with construction based upon SeriesAtLevelR formula, with n downward, x rightward and r backward: Before: this sequence, A101095, A101096, A101098, A022521, A000584, A000539, A101092, A101099.

%K easy,nonn

%O 1,2

%A Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004